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Difficult to beat näıve (1/N) diversification

through portfolio optimization.

1 Optimization with known parameters.

2 Plugging in mean and covariance estimates for true paramenters.

3 Out of sample randomness.
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Normal i.i.d. world

E[rt ] = µ, Var [rt ] = Σ. (1)

1 Global mean-variance efficient portfolio (GMVP): ω(g) = Σ−1ι
ι′Σ−1ι .

2 Mean-variance efficient for risk aversion γ: ω(m) = Σ−1µ
γ .

3 Equally weighted: ω(e) = ι
N .



Use “plug-In” portfolio weights

1 Global mean-variance efficient portfolio (GMVP): ω̂(g) = Σ̂−1ι
ι′Σ̂−1ι

.

2 Mean-variance efficient for risk aversion γ: ω̂(m) = Σ̂−1µ̂
γ .

3 Equally weighted: ω̂(e) = ι
N .



Comparing two portfolio strategies, s and s̃
Differences in certainty equivalet

CE (ω(s)) = µp(s)− γ

2
σ2
p(s) (2)

∆o(s, s̃) = CE (ω(s))− CE (ω(s̃))

∆op(s, s̃) = ∆o(s, s̃)− A

where A is due to the volatility induced by the fact that ω̂(s) 6= ω(s) and that

post-formation returns are random.

The 1/N approach does not optimize (-) but it is not subject to the estimation

error in the portfolio weights (+).

The paper shows convincingly that the need to estimate parameters has a very

large effect on out of sample portfolio performance, paticularly as N grows,

relative to T .
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Paper: Alternative weights - Shrink Σ̂ to I

Choose shrinkage parameter as is Ledoit and Wolf (2003).

Ledoit and Wolfe (2003) shrink Σ̂ but we are shrinking Σ̂−1. Does the same

shrinkage factor work?
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Alternative weights - Correct the biases

The plug-in weights are biased, due to Jensen’s inequality.

E[Σ̂−1] =
T

T − N − 2
Σ−1. (3)

For the tangency portfolio this suggests a simple adjustment:

ω̂a(m) = N−T−2
T

Σ̂−1µ̂
γ .

For the empirical sample sizes used in Table 4, this adjustment ranges from 0.94

(N = 5 , T = 120 ; 6% bias) to 0.13 (N = 50 , T = 60 ; 650% bias).

Similar to a shrinkage estimator, except shinking to zero to correct the bias and

letting the bias determine the shrinkage factor.



Alternative weights - Correct the biases

The correction is more complicated for the GMVP since we have two terms

subject to Jensen’s inequality:

1 Σ̂−1ι

2
1

ι′Σ̂−1ι



Alternative weights - Impose constrains on ω̂

For example, one could impose a ban on short positions: ω̂≥ 0

1 Not theoretically correct: Green and Hollifield (JF 1992)

2 Works well in practice: Jagannathan and Ma (JF 2002)

3 Can be combined with any of the alternative weights: plug-in,

bias-corrected, shrinkage.



Alternative weights - Impose a factor structure

1 Σ̂ has N × T observations and N (N+1)
2 parameters, for 2T

N+1 observations

per parameter. Its inverse is badly behaved when N is large, relative to T .

2 If we impose a K -factor structure, with K << T the obsetvations per

parameter improve to T
K+1 .



Alternative weights - Shrink to a factor structure

Shrink a bias-corrected estimate of Σ−1 toward an estimate based on a factor

model (B ′ΣFB + Σε)
−1
.

1 Observable factor model (e.g., CAPM, Fama-French factors).

2 Latent Factor model (e.g., Connor and Korajczyk (1986)).
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