Comment on Brownlees, Nualart \& Sun: 'Realized Networks'

by
Winfried Pohlmeier

Econometric Research in Finance Workshop 2017
SGH Warsaw School of Economics
September 15, 2017

Brief Summary

BNS develop a framework to estimate realized covariance matrices by means of realized networks L_{1}-norm penalization of the realized covariance matrix.

- dervivation of asymptotic risk bounds
- finite sample evidence by means of a Monte Carlo study
- network analysis
- portfolio application
- Realized networks are a powerful tool to bound estimation risk of high dimensional (realized) covariance matrices
- choice of realized cv estimation techniques is not decisisive
- Realized networks is useful shrinkage method for portfolio analysis
- Can be used to detect idiosycratic dependencies between assets/firm

Asymptotics

- Does a BIC selected λ satisfy the condition for λ needed for Theorem 1 to hold?
- Does the choice of m stand in conflict with assumption a) of Theorem 1 ?
- How does the conditions for risk bound help in applied work?

Possible Refinements of the Lasso

- Cross-validated choice of Lasso tuning parameter
- The naive equally weighted portfolio is often a very strong competitor in within-sample and out-of-sample competitions
- Adaptive Lasso to account for oracle properties
- Elastic net to keep the big fish in
- Portfolio Choice: Choosing λ based on performance measure
- Are covariances depictions of networks ?
- What do we learn from undirected models?
- How stable are the networks across time?
- How the lasso find the corret zero entries in the (inverse) of the cv matrix?
- How bumpy are the portfolio weights accross time (turnover cost of the portfolio)?

$$
\mathbf{X}=\Lambda \mathbf{F}^{\prime}+\varepsilon
$$

where $\mathbf{F}=\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{T}\right)^{\prime}$ is a $T \times r$-dimensional matrix of unobserved factors.

$$
\mathbf{f}_{t}=\Psi_{1} \mathbf{f}_{t-1}+\Psi_{2} \mathbf{f}_{t-2}+\cdots+\Psi_{K} \mathbf{f}_{t-K}+\mathbf{u}_{t},
$$

From Nowak, Hastie, Pollack \& Tibshirani (2011)

$$
\begin{aligned}
\mathcal{L}(\Lambda, \mathbf{F})= & \sum_{t=1}^{T} \sum_{i=1}^{N}\left(x_{i t}-\sum_{l=1}^{r} \lambda_{i l} f_{l t}\right)^{2}+\alpha \sum_{l=1}^{r} \sum_{i=1}^{N}\left|\lambda_{i l}\right| \\
& \text { s.t. } \frac{1}{T} \sum_{t=1}^{T} f_{l t}^{2}=1
\end{aligned}
$$

