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Introduction

Example: Mean Variance Portfolio

I Consider an investor who chooses a portfolio among N financial assets

I rt ∈ RN , E [rt] = µ , V [rt] = Σ

I Efficient (norm constrained) portfolio:

max
ω

CE(ω) = max
ω
{µ′ω − γ

2
ω′Σω} such that ι′ω = 1

ω(m) =
Σ−1ι

ι′Σ−1ι
+

1

γ
·
(

Σ−1 − Σ−1ιι′Σ−1

ι′Σ−1ι

)
µ

I number parameters ∼ O(N2).
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Introduction

Empirical Portfolio Models: Stylized Facts

I Stylized facts of empirical portfolio weights:

I high standard error highly instable across time

I bad predictive quality

I some with pathological distribution with no finite first and second moments

I The naive equally weighted portfolio is often a very strong competitor in

within-sample and out-of-sample competitions
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Introduction

Illustration: Estimation Noise
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Figure: Frequency distribution of estimated portfolio weights vs the true theoretical value based

on the Monte-Carlo study, r
iid∼ N (µ,Σ), number of assets N = 5, estimation window length

T = 120 (i.e. 10 years of monthly data). (µ,Σ) set as in the Kenneth R. French data.
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Introduction

Empirical Portfolio Models: Performance Testing

I Evaluation of Portfolio allocation strategies: Sharpe Ratio or Certainty

Equivalent

I Testing the difference in performance measures by a z-test

I Related literature:

I Under iid-normality for Sharpe Ratio: Jobson and Korkie (1981), Memmel (2003)

I Bootstrap test: Ledoit and Wolf (2008), Ledoit and Wolf (2011)

I Delta method for Certainty Equivalent: DeMiguel et al. (2009)

I Test the difference in performance measures of two arbitrary asset returns

I Portfolio performance testing quality is under-researched
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Introduction

Goals of the Paper

I Investigation of the stochastic nature of out-of-sample portfolio returns

underlying the performance tests

I Analysis of the size and power properties of portfolio performance tests

I Give guidance on how to deal with the low power

I providing an lternative way of using the information of performance test within

an algorithmic pre-testig strategy
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Out-of-Sample Returns and Performance Measures

Certainty Equivalent

I Consider a portfolio of N financial assets rt ∈ RN with E [rt] = µ and V [rt] = Σ

I Let ω(s) denote an N × 1 vector of portfolio weights of a strategy s

I Portfolio return rpt (s) = ω(s)′rt

I Portfolio mean µp(s) = E [rpt (s)] = ω(s)′µ

I Portfolio variance V [rpt (s)] = ω(s)′Σω(s)

I Certainty Equivalent CE(ω(s)) = ω(s)′µ− γ
2
ω(s)′Σω(s)

I CE difference ∆0(s, s̃) = CE(ω(s))− CE(ω(s̃))
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Out-of-Sample Returns and Performance Measures

Certainty Equivalent

I Out-of-sample portfolio return of strategy s:

r̂pt+1(s) = ω̂t+1|t(s)
′rt+1 = ω̂t(s)

′rt+1

I µop(s) = E
[
r̂pt+1(s)

]
= E [ω̂t(s)]

′ µ

I σ2
op(s) = V

[
r̂pt+1(s)

]
= E [ω̂t(s)

′Σ ω̂t(s)] + µ′V [ω̂t(s)]µ

I Out-of-sample CE:

CEop(ω̂t(s)) = µop(s)− γ
2
σ2
op(s) = CE(ω(s))− γ

2
tr
(
Σ V [ω̂(s)]

)
− γ

2
µ′V [ω̂t(s)]µ

I Out-of sample difference:

∆op(s, s̃) ≡

∆0(s, s̃)− γ
2

[
tr(Σ V [ω̂t(s)])− tr(Σ V [ω̂t(s̃)])

]
− γ

2
µ′
[

V [ω̂t(s)]−V [ω̂t(s̃)]
]
µ
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Out-of-Sample Returns and Performance Measures

CE difference GMVP vs 1/N
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Average CE differences over 5 000 random N out of 100 asset combinations for GMVP and equally weighted
portfolio by dimension of the asset universe N for different values of the risk aversion parameter γ. The estimation

window length T is set to 120 (10 years of monthly observations). Upper-left plot: difference in theoretical CE,
∆0(s, s̃). Lower-left plot: estimation noise penalty. Lower-right plot: out-of-sample risk penalty. Upper-right plot:

overall out-of-sample CE difference.
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Out-of-Sample Returns and Performance Measures

Result 1: the null hypothesis

I Applied research: comparison is based on ĈEop(ω̂t(s))

H0 : ∆op(s, s̃) = E
[
ĈEop(ω̂t(s))− ĈEop(ω̂t(s̃))

]
= 0

I E
[
ĈEop(ω̂t(s))

]
= CE(ω(s))− γ

2
tr [Σ V [ω̂(s)]]− γ

2
µ′V [ω̂t(s)]µ

I Takes into account estimation risk − γ
2
tr [Σ V [ω̂(s)]]

I Takes into account forecasting risk − γ
2
µ′V [ω̂t(s)]µ

I Evaluate test properties by a Monte Carlo Study
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Monte Carlo Design

Distribution of the out-of-sample returns

I In the following the out-of-sample portfolio returns rpt+1(s) are based on the

estimated weights and rpt+1(s̃) are based on the non-stochastic weights

I Assume rt
iid∼ N (µ,Σ)

I Okhrin and Schmid (2006): estimated Global Minimum Portfolio (GMVP)

weights follow a multivariate elliptical t-distribution

I Mixture design:

f
(
r̂pt+1(s), rpt+1(s̃)

)
= f

(
ω̂t(s)

′rt+1, ωt(s̃)
′rt+1|ω̂t(s)

)
· g
(
ω̂t(s)

)
r̂pt+1(s)

rpt+1(s̃)

∣∣∣∣∣∣
ω̂t(s)

∼ N

ω̂t(s)′µ
ωt(s̃)

′µ

 ,
ω̂t(s)′Σω̂t(s) ω̂t(s)

′Σωt(s̃)

ωt(s̃)Σω̂t(s)
′ ωt(s̃)

′Σωt(s̃)
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Monte Carlo Design

Distribution of the out-of-sample returns
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Marginal distribution of the out-of-sample portfolio returns for the GMVP (r̂p(s)) and equally weighted portfolio

(r̂p(s̃)): based on the real data (in red), simulated from bivariate t5, simulated from bivariate normal and

simulated from the proposed mixture design (in blue). The mean and standard deviation of the simulated returns

are adjusted to be the same as of the empirical portfolio returns.
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Test properties

Test Properties

The following comparison is based on:

I Type of the test

I Delta Method

I Bootstrap (percentile and t-statistic)

I Out-of-sample evaluation horizon (H)

I Risk aversion (γ)

I Estimation noise N/T , with N = 30 and T denoting the size of in-sample window

I Benchmark strategy (correlatedness of the out-of-sample returns)
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Test properties

Size (α̂)

Table: Empirical rejection probabilities under H0 for GMVP vs 1/N. α = 5%. N/T = 0.01

Two-sided One-sided

Delta

method

Bootstrap

Percentile

Bootstrap

t-statistic

Delta

method

Bootstrap

Percentile

Bootstrap

t-statistic

γ = 0.5 0.0539 0.0505 0.0542 0.0520 0.0503 0.0520

H = 100 γ = 1.0 0.0544 0.0508 0.0547 0.0522 0.0502 0.0523

γ = 3.0 0.0547 0.0504 0.0549 0.0515 0.0504 0.0519

γ = 0.5 0.0540 0.0532 0.0541 0.0514 0.0511 0.0517

H = 500 γ = 1.0 0.0536 0.0531 0.0540 0.0522 0.0518 0.0523

γ = 3.0 0.0543 0.0538 0.0545 0.0512 0.0513 0.0514

γ = 0.5 0.0564 0.0564 0.0566 0.0537 0.0535 0.0538

H =1000 γ = 1.0 0.0561 0.0561 0.0565 0.0530 0.0528 0.0529

γ = 3.0 0.0563 0.0559 0.0564 0.0519 0.0525 0.0523

Figures in the table correspond to the share of Monte Carlo draws where the null hypothesis was rejected (out of
50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.
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Test properties

Power (1 − β̂)

Table: Power at 1% expected CE difference for GMVP vs 1/N. α = 5%. N/T = 0.01

Two-sided One-sided

Delta

method

Bootstrap

Percentile

Bootstrap

t-statistic

Delta

method

Bootstrap

Percentile

Bootstrap

t-statistic

γ = 0.5 0.0625 0.0588 0.0630 0.0871 0.0845 0.0875

H = 100 γ = 1.0 0.0622 0.0581 0.0624 0.0851 0.0825 0.0855

γ = 3.0 0.0618 0.0587 0.0625 0.0830 0.0818 0.0842

γ = 0.5 0.0875 0.0868 0.0874 0.1399 0.1396 0.1404

H = 500 γ = 1.0 0.0903 0.0896 0.0906 0.1405 0.1405 0.1408

γ = 3.0 0.0876 0.0875 0.0877 0.1368 0.1375 0.1375

γ = 0.5 0.1280 0.1276 0.1283 0.1993 0.1992 0.1999

H =1000 γ = 1.0 0.1271 0.1267 0.1272 0.1952 0.1956 0.1960

γ = 3.0 0.1227 0.1238 0.1229 0.1922 0.1933 0.1928

Figures in the table correspond to the share of Monte Carlo draws where the null hypothesis was rejected (out of
50 000 draws). H denotes the out-of-sample evaluation window length and γ denotes risk aversion coefficient.
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Test properties

ROC curves: Delta Method
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ROC curves for a two-sided Delta Method. Risk aversion is set to γ = 1 for the asset space N = 30. Left panel:

GMVP vs 1/N for different estimation noise N/T ratios. Right panel: GMVP combined with the ridge covariance

matrix estimator vs 1/N with N/T = 0.01.
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Test properties

Result 2: properties of tests

I The tests are heavily influenced by:

I out-of-sample horizon length

I estimation noise

I correlation degree among the out-of-sample returns of the two strategies

I The power of the tests is very low

However

I One-sided tests have better testing properties

I Tests can be used in pretesting
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Power Optimal Pretest Portfolios

Pretest estimation

Deciding between two portfolio strategies in the presence of low power:

I The pretest estimator depends either on strategy s in case H0 is rejected or on s̃

otherwise:

H0 : ∆op(s, s̃) ≤ 0 and H1 : ∆op(s, s̃) > 0

ωt+h(s, s̃) = 1l
(
∆̂op(s, s̃) > ∆∗(α)

)(
ωt+h(s) − ωt+h(s̃)

)
+ ωt+h(s̃), h = 1, ..., H

E
[
ĈEop(s, s̃)

∣∣∣∆op(s, s̃) > 0
]

= π(α) · E
[

∆̂op(s, s̃)
∣∣∣ ∆̂op(s, s̃) > ∆∗(α)

]
+ E

[
ĈEop(s̃)

]
E
[
ĈEop(s, s̃)

∣∣∣∆op(s, s̃) ≤ 0
]

= α · E
[

∆̂op(s, s̃)
∣∣∣ ∆̂op(s, s̃) > ∆∗(α)

]
+ E

[
ĈEop(s̃)

]
I How to choose an optimal α?
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Power Optimal Pretest Portfolios

Pretesting strategy: infeasible
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Pretesting strategy: GMVP vs 1/N, γ = 1. Kenneth R.French data on 5 industry portfolios with estimation

window length of T = 60 (5 years of monthly observations), corresponding to N/T = 0.08 ratio. Dashed line

corresponds to the conventional α = 5%.
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Power Optimal Pretest Portfolios

Pretesting strategy

I Feasible solution: the in-sample CE optimizing significance level α∗t is chosen for

the test, determining the strategy for the next period t+ 1:

α∗t+1 = arg max
α

CE∗in(α, s, s̃|t− T, ..., t).

I Shrinking α∗t+1 towards a target α0, e.g. to the conventional 5% level:

αst+1 = (1− λ)α∗t+1 + λα0,

I Adaptive smoothing the series according to

αmt+1 = (1− λ)α∗t+1 + λαmt ,
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Power Optimal Pretest Portfolios

Pretesting strategy: out-of-sample CE

T=60 T=120

γ=0.1 γ=1 γ=3 γ=0.1 γ=1 γ=3

Strategy N=5

GMVP 0.0898 0.0755 0.0470 0.0858 0.0722 0.0427

1/N 0.0929 0.0777 0.0417 0.0885 0.0721 0.0367

In-sample 0.0957 0.0806 0.0496 0.0905 0.0756 0.0438

Shrinking 0.0948 0.0794 0.0456 0.0908 0.0749 0.0405

Smoothing 0.0984 0.0830 0.0516 0.0931 0.0778 0.0455

N=30

GMVP 0.0839 0.0662 0.0355 0.0829 0.0733 0.0492

1/N 0.0930 0.0784 0.0459 0.0893 0.0738 0.0407

In-sample 0.0962 0.0793 0.0468 0.0969 0.0821 0.0517

Shrinking 0.0938 0.0782 0.0460 0.0926 0.0783 0.0481

Smoothing 0.0997 0.0837 0.0525 0.0968 0.0832 0.0536

The numbers in the table correspond to the annualized average out-of-sample CE over 1000 randomly formed

portfolios of the specified size. T denotes the estimation window length, γ denotes risk aversion coefficient and N

is the number of assets. The numbers in bold correspond to the largest CE obtained for a given γ,N, T

combination. The evaluation window length H = 600. The tuning parameter λ for both shrinking and smoothing

the α∗ series is set to be 0.5.
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Power Optimal Pretest Portfolios

Refinements of the pretesting strategy

I adaptive smoothing: optimizing over the smoothing papameter

I bagging the indicator

I pretesting of ω̂t(g)
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Summary

Concluding remarks

I Why is the 1/N strategy performing so well?

I no estimation risk

I low power of performance test

I Tests (incl. various implementations) have very similar properties

I One can improve on testing properties by choosing another benchmark and

longer evaluation horizon

I One-sided tests do better in terms of power

I Choosing a lower α reduces the probability of random selection
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Summary

Thank you!
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Summary
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