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High Frequency Data Based Volatility Estimation

Over the last decade, the availability of intra-daily high frequency
trade, quote and order book data has boosted research on the
construction of efficient ex-post measure of daily return variability

These estimator are typically called realized volatility estimators

Extensive literature on the topic:
Andersen, Bollerslev, Diebold and Labys (2003); Ait-Sahalia, Mykland and Zhang (2005);
Bandi and Russell (2006); Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009);
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Introduction

Two Challenges

The multivariate generalizations of these estimators, aka realized
covariance, have not not been as widely applied as their univariate
counterparts

Besides numerical challenges, realized covariance estimation
suffers from two challenges which are inherently linked to
covariance estimation for large number of assets:

1 Precise estimation of the covariance (cf Ledoit & Wolf, 2004)

2 Interpretation of the dependence structure of the assets
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Introduction

In This Work...

1 We propose a lasso–based regularization procedure for realized
covariance estimation.

It shrinks the off diagonal elements of the inverse realized covariance to zero

Regularized estimator can be interpreted as a partial correlation network

We call our estimator the Realized Network

2 We analyse the large sample properties of the estimator.

We employ standard covariance estimation framework which allows for

market-microstructure noise and asynchronous trading

Focus on Two Scales Realized Covariance estimator and Multivariate Realized Kernel

Establish conditions of consistent covariance estimation and network selection

3 Advantages of the methodology are illustrated by means of a
simulation study and an empirical illustration
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Related Literature

Covariance Regularization
Ledoit and Wolf (2004), Fan, Liao, Mincheva (2011), Ledoit and Wolf (2012), ...

Realized Covariance Regularization:
Hautsch, Kyj and Oomen (2012); Corsi, Peluso, and Audrino (2015); Malec,

Hautsch, Kyj (2015); Wang and Zhou (2010); Tao, Wang and Zhou (2013);

Network Estimation in Econometrics and Statistics:
Meinshausen & Buhlmann (2006); Brownlees & Barigozzi (2013); Diebold & Yilmaz

(2013); Billio, Getmansky, Lo and Pellizzon (2012)
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Covariance of the Efficient Price

y(t) denotes the efficient log–price of n assets.

y(t) is a Brownian martingale

y(t) =

∫ t

0

Θ(u)dB(u) ,

where B(u) Brownian motion and Θ(u) is the spot covolatility

Integrated Covariance: the covariance matrix of daily return y(1)

Var (y) =

∫ 1

0

Σ(t)dt = Σ?

where Σ(t) = Θ(t)Θ(t)′.
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Partial Correlation Network

We associate daily returns y(1) with a partial correlation network

The network associated with the system is an undirected graph

y1

y2

y3y4

y5

1 the components of y(1) denote vertices
2 the presence of an edge between i and j denotes that i and j are

partially correlated and the value of the partial correlation
measures the strength of the link.
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Refresher on Partial Correlation

Partial Correlation measures (cross-sect.) linear conditional
dependence between yi t and yj t given on all other variables:

ρij = Cor(yi t , yj t |{yk t : k 6= i , j}).

Partial Correlation is related to Linear Regression:
For instance, consider the model

y1 t = c + β1 2y2 t + β1 3y3 t + β1 4y4 t + β1 5y5 t + u1 t

β13 is different from 0 ⇔ 1 and 3 are partially correlated

Partial Correlation is related to Correlation:
If there is exist a partial correlation path between nodes i and j ,
then i and j are correlated (and viceversa).

Brownlees, Nualart & Sun (2017) 7/27



Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Refresher on Partial Correlation

Partial Correlation measures (cross-sect.) linear conditional
dependence between yi t and yj t given on all other variables:

ρij = Cor(yi t , yj t |{yk t : k 6= i , j}).

Partial Correlation is related to Linear Regression:
For instance, consider the model

y1 t = c + β1 2y2 t + β1 3y3 t + β1 4y4 t + β1 5y5 t + u1 t

β13 is different from 0 ⇔ 1 and 3 are partially correlated

Partial Correlation is related to Correlation:
If there is exist a partial correlation path between nodes i and j ,
then i and j are correlated (and viceversa).

Brownlees, Nualart & Sun (2017) 7/27



Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Refresher on Partial Correlation

Partial Correlation measures (cross-sect.) linear conditional
dependence between yi t and yj t given on all other variables:

ρij = Cor(yi t , yj t |{yk t : k 6= i , j}).

Partial Correlation is related to Linear Regression:
For instance, consider the model

y1 t = c + β1 2y2 t + β1 3y3 t + β1 4y4 t + β1 5y5 t + u1 t

β13 is different from 0 ⇔ 1 and 3 are partially correlated

Partial Correlation is related to Correlation:
If there is exist a partial correlation path between nodes i and j ,
then i and j are correlated (and viceversa).

Brownlees, Nualart & Sun (2017) 7/27



Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Refresher on Partial Correlation

Network is entirely characterized by the integrated concentration
matrix K? = (Σ∗)−1 = (k?ij ):

ρij =
−k?ij√
k?iik

?
jj

In particular, the nonzero entries of K∗ correspond to the linkages
of the network.

If volatility is deterministic, then absence of partial correlation
implies that daily returns are conditionally independent. Thus
network expresses conditional dependence relations.

Brownlees, Nualart & Sun (2017) 8/27
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Factors

In finance, it is customary to assume that returns have a factor
structure. In practice, it is more interesting to analyse the partial
correlation structure of assets conditional on the factors

Thus, in this work we define the network on the basis of the
idiosyncratic integrated covariance, that is the covariance of the
residuals obtained by projecting the factors onto the assets

Σ?
I = Σ?

AA −Σ?
AF [Σ?

FF ]−1 Σ?
FA = (σ?I ij)
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Microstructure Noise & Asynchronous Trading

It is customary to assume that the econometrician does not observe
the efficient price y but a contaminated version x defined as

xi(ti k) = yi(ti k) + ui(ti k)

where

ti k (asset specific) timestamp of a trade/midquote

ui(ti k) noise of the ti k-th trade/midquote
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Framework Assumptions Realized Covariance Estimator Realized Network Estimator

Estimation

Objectives:

1 Estimate the integrated covariance
2 Detect the nonzero linkages of the network, which is equivalent

to detecting the nonzero entries of the integrated concentration
matrix.

We are going to tackle both objectives simulatenously by
introducing a sparse integrated concentration matrix estimator.
More specifically:

1 We are going to introduce an appropriate estimator of the
integrated covariance

2 and we are then going to regularize it by shrinking the
off–diagonal entries of its inverse to zero via the LASSO
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Two Scales Realized Covariance Estimator

Our estimation strategy consist of regularizing a consistent RC
estimator. Many estimators are available in the setting we are
working on

In this presentation we focus on the Two Scales Realized
Covariance estimator Σ based on Pairwise–Refresh Time (TSRC).
The estimator deals with both market microstructure noise and
asynchronicity.

Other sufficiently regular estimators can be used. Theory does not
depend non specific form of the estimator. In particular, the paper
also develops the theory for the Multivariate Realized Kernel.

Brownlees, Nualart & Sun (2017) 12/27
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Two–Scale Realized Covariance (TSRC)

Let (x ri k , x
r
j k) denote the “pairwise refresh time” adjusted

observed prices for stock i and j

The TSRC estimator is denoted by ΣTS = (σTS,ij) ,

σTS,ij =
1

K

m∑
k=K+1

(
x ri k − x ri k−K

) (
x rj k − x rj k−K

)
− mK

mJ

1

J

m∑
k=J+1

(
x ri k − x ri k−J

) (
x rj k − x rj k−J

)
where mK = m−K+1

K
and mJ = m−J+1

J
.
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Realized Network Estimator

The Realized Network Estimator is defined as

K̂ = arg min
K∈Sn

{
tr(ΣK)− log det(K) + λ

∑
i 6=j

|kij |

}

The optimization problem of can be reformulated as a sequence of
lasso regression. Optimization is straightforward in large
dimensional applications (e.g. 500 assets)

Brownlees, Nualart & Sun (2017) 14/27
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Theory

Preliminaries

Key ingredient to establish results is a concentration inequality of the
realized volatility estimator.

Define M as the minimum sample size used to compute a realized
covariance entry across all pairs of stocks.

Then we have

P
(∣∣σij − σ?ij

∣∣ > x
)
≤ a1M

α exp
{
−a2

(
Mβx

)γ}
.

for some positive exponents α, β, γ
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Theory

Consistent Estimation

Theorem: Consistent Concentration Estimation

Let λ = 8
α
M−β

(
log(a1nτ )

a2

) 1
γ

for some τ > 2.

Let

M > C

(
log

(
a2(a

1
βγ

1 C0(d)
1
β )nτ

)) 1
βγ

C0(d)
1
β ,

where C0 is a function of the max vertex degree d

Then, for n sufficiently large

P

(
||K̂−K?||∞ ≤ 2CΓ∗

(
1 +

8

α

)
M−β

[
log (a1M

αnτ )

a2

] 1
a0

)
≥ 1− 1

nτ−2

where CΓ? is a constant that depends on Σ.
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Theory

Consistent Selection

Theorem: Consistent Network Selection

Let λ = 8
α
M−β

(
log(a1nτ )

a2

) 1
γ

for some τ > 2.

Let

M > C

(
log

(
a2(a

1
βγ

1 C1(d)
1
β )nτ

)) 1
βγ

C1(d)
1
β ,

where C1 is a function of the max vertex degree d.
Then, for n sufficiently large

P
(
sign(k̂ij) = sign(k?ij ),∀i , j ∈ {1, . . . , n}

)
≥ 1− 1

nτ−2
.
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Theory

Estimator Precision and Sparsity

It is useful to analyse how the expression simplify depending on
the degree of sparsity of the networks

1 If the max degree d is zero (disconnected graph), then the sample

size M has to be at least O((log n)
1
βγ )

2 If the max degree d is O(n) (fully connected graph), then the

sample size M has to be at least O((log n)
1
βγ n

1
β )

Not that for the realized volatility estimator without noise and
asynchronicity, β = 1/2
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Simulation Study

Simulation Study Peek: MSE vs Network Shrinkage

Simulation study to analyse finite sample properties of the
procedure.

In particular, study shows that if partial correlation structure is
sparse, realized network estimator substantially enhances precision.
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Empirical Application

We consider a panel of 96 NYSE Bluechips
(≈ constituents of the S&P 100)

We estimate realized covariance for each day of 2009

Realized covariance is estimated using the
Realized Network estimator based on TSRC.
(tuning parameter λ chosen via the BIC)

Estimators are computed using trade prices from the NYSE–TAQ
Standard procedures are applied to clean and filter the data

We focus on the idiosyncratic covariance matrix
We analyse interdependence conditional on the market factor.
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Empirical Application

Realized Network Estimates

Realized Correlation Heatmap on 2009-07-02
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Empirical Application

Realized Network Estimates
Realized Network on 2009-07-02
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Realized Network Estimates
Realized Network on 2009-07-02
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Empirical Application

Degree and Partial Correlation Distribution

Degree Partial Correlation

Brownlees, Nualart & Sun (2017) 24/27



Empirical Application

Predictive Analysis

GMV portfolio prediction exercise:
1 Construct the GMV portfolio weights using the MRK

Competitors: Unconstrained, Constrained, Shrinkage and Realized Network

2 Use the weights to construct daily GMV portfolio for the following day.

3 Compute the variance of the daily portfolios over the full year

More precise covariance estimators deliver GMV portfolio weights
that generate smaller out-of–sample portfolio variances
(cf Engle and Colacito, 2006)
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Empirical Application

Predictive Analysis: GMV Comparison

No Regular. Diagonal Network Factor Shrinkage Block-Factor
RC 13.40 13.74 12.09 12.11 12.03 13.24

−0.70 1.41 2.46∗∗ 2.65∗∗∗ 0.26
TSRC 13.05 13.52 11.96 12.34 12.16 12.29

−0.74 1.88∗ 1.34 1.73∗ 0.88
MRK 12.95 13.89 11.65 13.03 10.46 11.15

−1.82∗ 2.17∗∗ −0.12 4.19∗∗∗ 2.30∗∗
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Conclusions

Propose a lasso regularization procedure for realized covariance
estimators. We call the regularized estimator Realized Network.

Highlights:

1 The procedure delivers more precise estimates of the covariance
when the partial correlation structure of the assets is sparse.

2 Regularized estimator can be represented as a network.

Empirical application shows that regularization significantly
improves the estimator. In a GMV portfolio forecasting exercise,
substantial gains in prediction accuracy
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Conclusions

Questions?

Thanks!
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