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High Frequency Data Based Volatility Estimation

m Over the last decade, the availability of intra-daily high frequency
trade, quote and order book data has boosted research on the
construction of efficient ex-post measure of daily return variability

m These estimator are typically called realized volatility estimators

m Extensive literature on the topic:
Andersen, Bollerslev, Diebold and Labys (2003); Ait-Sahalia, Mykland and Zhang (2005);
Bandi and Russell (2006); Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009);

and many others
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We propose a LASSO—based regularization procedure for realized
covariance estimation.

B It shrinks the off diagonal elements of the inverse realized covariance to zero

B Regularized estimator can be interpreted as a partial correlation network

We call our estimator the Realized Network

We analyse the large sample properties of the estimator.

B We employ standard covariance estimation framework which allows for
market-microstructure noise and asynchronous trading
B Focus on Two Scales Realized Covariance estimator and Multivariate Realized Kernel

B Establish conditions of consistent covariance estimation and network selection

Advantages of the methodology are illustrated by means of a
simulation study and an empirical illustration
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m Realized Covariance Regularization:
Hautsch, Kyj and Oomen (2012); Corsi, Peluso, and Audrino (2015); Malec,
Hautsch, Kyj (2015); Wang and Zhou (2010); Tao, Wang and Zhou (2013);

m Network Estimation in Econometrics and Statistics:
Meinshausen & Buhlmann (2006); Brownlees & Barigozzi (2013); Diebold & Yilmaz
(2013); Billio, Getmansky, Lo and Pellizzon (2012)
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Covariance of the Efficient Price

m y(t) denotes the efficient log—price of n assets.

= y(t) is a Brownian martingale

_ /OtG(u)dB(u)

where B(u) Brownian motion and ©(u) is the spot covolatility

m Integrated Covariance: the covariance matrix of daily return y(1)

Var (y) :/0 3(t)dt =

where X(t) = O(t)O(t)'.

:
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Partial Correlation Network

m We associate daily returns y(1) with a partial correlation network

m The network associated with the system is an undirected graph

-0.3 0.5 0.1

the components of y(1) denote vertices

the presence of an edge between i/ and j denotes that / and j are
partially correlated and the value of the partial correlation
measures the strength of the link.
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dependence between y;, and y;. given on all other variables:

pij - Cor(yl'taythykt L k % Ia./})

m Partial Correlation is related to Linear Regression:
For instance, consider the model

Yie =C+ Proyoe + Pi3yze + BraYar + Bisyse + Ure

[13 is different from 0 < 1 and 3 are partially correlated

m Partial Correlation is related to Correlation:
If there is exist a partial correlation path between nodes / and J,
then / and j are correlated (and viceversa).
(U]
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Refresher on Partial Correlation

m Network is entirely characterized by the integrated concentration
matrix K* = (X*)71 = (k;)

pl = '

In particular, the nonzero entries of K* correspond to the linkages
of the network.

m If volatility is deterministic, then absence of partial correlation
implies that daily returns are conditionally independent. Thus
network expresses conditional dependence relations.

Brownlees, Nualart & Sun (2017) 8/27
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Framework Assumptions Realized Covariance Estimator Realized Ne Estimator

Factors

m In finance, it is customary to assume that returns have a factor
structure. In practice, it is more interesting to analyse the partial
correlation structure of assets conditional on the factors

m Thus, in this work we define the network on the basis of the
idiosyncratic integrated covariance, that is the covariance of the
residuals obtained by projecting the factors onto the assets

-1
T =204 — Zar [ZF A= (O-TU)
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Estimation

m Objectives:

Estimate the integrated covariance

Detect the nonzero linkages of the network, which is equivalent
to detecting the nonzero entries of the integrated concentration
matrix.

m We are going to tackle both objectives simulatenously by
introducing a sparse integrated concentration matrix estimator.
More specifically:

We are going to introduce an appropriate estimator of the
integrated covariance

and we are then going to regularize it by shrinking the
off-diagonal entries of its inverse to zero via the LASSO
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Two Scales Realized Covariance Estimator

m Our estimation strategy consist of regularizing a consistent RC
estimator. Many estimators are available in the setting we are
working on

m In this presentation we focus on the Two Scales Realized
Covariance estimator X based on Pairwise—Refresh Time (TSRC).
The estimator deals with both market microstructure noise and
asynchronicity.

m Other sufficiently regular estimators can be used. Theory does not
depend non specific form of the estimator. In particular, the paper
also develops the theory for the Multivariate Realized Kernel.
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Two—-Scale Realized Covariance (TSRC)

m Let (x/,, x/,) denote the “pairwise refresh time” adjusted
observed prices for stock / and j

m The TSRC estimator is denoted by X1s = (s, ,

1 m
oT1sij = K Z (Xirk_ irka) (Xjrk_xjrka)
K=K+

1
m
myg 1
r r
TN E: ( ) (X.Ik >9ka)
k=J+1
where mK:’"’TK“and mJ:’"’JJH.
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Realized Network Estimator

m The Realized Network Estimator is defined as

K= arg min {tr(fK) — log det(K) + )\Z \kuy}

Kesn WY
i#]
m The optimization problem of can be reformulated as a sequence of

LASSO regression. Optimization is straightforward in large
dimensional applications (e.g. 500 assets)
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Theory
Preliminaries

Key ingredient to establish results is a concentration inequality of the
realized volatility estimator.

m Define M as the minimum sample size used to compute a realized
covariance entry across all pairs of stocks.

m Then we have
P (}E,-j - a,-*j‘ > x) < a;M“ exp {—32 (MBX)’Y} .

for some positive exponents «, 3,y
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Theory

Consistent Estimation

Theorem: Consistent Concentration Estimation
1

Let \=SM~7F <Iog(j—21n7)> " for some 7 > 2.

Let

M>C <Iog <az(afv co(d)é)nf>) 7 Go(d)?,

where Cqy is a function of the max vertex degree d

=

Then, for n sufficiently large

1
= I MenT) | = 1
P<||K—K*||OOS2CF* (1+§) M—B [M} 0) Z]__ 5
o ar nT—

where Cr« is a constant that depends on X.. ‘J
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Theory

Consistent Selection

Theorem: Consistent Network Selection
1
Let A\ = %M‘ﬁ <M> " for some T > 2.

a2

Let

M > C (Iog <32(a1 Ci(d)#)n ))B Cu(d)?,

where C; is a function of the max vertex degree d.
Then, for n sufficiently large

-

p <sign(?,-) = sign(k;), Vi, j € {1,. }) >1-—
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Estimator Precision and Sparsity

m It is useful to analyse how the expression simplify depending on
the degree of sparsity of the networks

If the max degree d is zero (disconnected graph), then the sample
1
size M has to be at least O((log n)57)

If the max degree d is O(n) (fully connected graph), then the
1 1
sample size M has to be at least O((log n)?vn#)

m Not that for the realized volatility estimator without noise and
asynchronicity, § = 1/2
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Simulation Study

Simulation Study Peek: MSE vs Network Shrinkage

10

m Simulation study to analyse finite sample properties of the
procedure.

= In particular, study shows that if partial correlation structure is __
sparse, realized network estimator substantially enhances precisio
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Empirical Application

m We consider a panel of 96 NYSE Bluechips
(= constituents of the S&P 100)

m We estimate realized covariance for each day of 2009
m Realized covariance is estimated using the
Realized Network estimator based on TSRC.

(tuning parameter )\ chosen via the BIC)

m Estimators are computed using trade prices from the NYSE-TAQ
Standard procedures are applied to clean and filter the data

m We focus on the idiosyncratic covariance matrix
We analyse interdependence conditional on the market factor. =
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Empirical Application

Realized Network Estimates

Realized Correlation Heatmap on 2009-07-02
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Empirical Application

Degree and Partial Correlation Distribution
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Empirical Application

Predictive Analysis

m GMV portfolio prediction exercise:
Construct the GMV portfolio weights using the MRK

Competitors: Unconstrained, Constrained, Shrinkage and Realized Network
Use the weights to construct daily GMV portfolio for the following day.
Compute the variance of the daily portfolios over the full year

m More precise covariance estimators deliver GMV portfolio weights
that generate smaller out-of-sample portfolio variances
(cf Engle and Colacito, 2006)
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Empirical Application

Predictive Analysis: GMV Comparison

No Regular. Diagonal Network Factor Shrinkage Block-Factor
RC 13.40 13.74 12.09 12.11 12.03 13.24
—0.70 1.41 2.46™* 2.65%** 0.26
TSRC 13.05 13.52 11.96 12.34 12.16 12.29
—0.74 1.88* 1.34 1.73* 0.88
MRK 12.95 13.89 11.65 13.03 10.46 11.15
—1.82* 2.17** —0.12 4.19%** 2.30%*
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Conclusions
Conclusions

m Propose a LASSO regularization procedure for realized covariance
estimators. We call the regularized estimator Realized Network.

m Highlights:
The procedure delivers more precise estimates of the covariance
when the partial correlation structure of the assets is sparse.
Regularized estimator can be represented as a network.

m Empirical application shows that regularization significantly
improves the estimator. In a GMV portfolio forecasting exercise,
substantial gains in prediction accuracy

&\
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Questions?

Thanks!
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