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Introduction

Volatility is a central parameter for many financial decisions
including the pricing and hedging of derivative products as well
as the development of efficient risk management methods.

In literature there exists a wide variety of models that are able
to estimate volatility forecasts, but they are, almost by
definition, simple and incomplete (Raviv 2016).

An improvement in the forecasts accuracy can be achieved
combining forecasts originated from different types of models.
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Introduction

The aim of this paper is:

to forecast the daily realized volatility one-step-ahead for a
one-year period with both single and combining models;

to compare the predicted values with the actual data by
means of a number of loss functions.
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Data

Three European market indexes:

1 DAX 30 (Deutsche Aktienindex 30);

2 CAC 40 (Cotation Assistée en Continu);

3 AEX (Amsterdam Exchange Index).

For each asset the realized volatility collected every 5 minutes, the
realized kernel volatility and the daily returns are provided,
covering the period from 01/01/2008 to 31/12/2016.

Carità, De Luca, Gallo The evaluation of combination of forecasts



Introduction
Data and Methodology

Comparisons
Conclusions
References

Loss Functions

Methodology

Three different models have been chosen to create the single
forecasts:

1 Asymmetric Multiplicative Error Model (AMEM);

2 Asymmetric Power Multiplicative Error Model (APMEM);

3 Asymmetric Heterogeneous AutoRegressive Model (AHAR).
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1 AMEM(1,1) model (Engle and Gallo 2006) has the following
structure:

rvt = µtξt

µt = ω + αrvt−1 + βµt−1 + γDt−1rvt−1

with ω > 0, α ≥ 0, β ≥ 0, γ ≥ 0, α + β + γ
2 < 1.
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2 APMEM(1,1) model is given by:

rvt = µtξt

µδt = ω + αrv δt−1 + βµδt−1 + γDt−1rv
δ
t−1

with ω > 0, α ≥ 0, β ≥ 0, α + β < 1, δ > 0.
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3 AHAR is the HAR model (Corsi 2009) with a leverage effect
term:

rvt = c + β(d)rvt−1 + β(w)rv
(w)
t−1 + β(m)rv

(m)
t−1 + ε

(d)
t

where:
(d) stands for the time horizons of one day;

rv
(w)
t−1 is the weekly realized volatility which at time t is given by the

average

rv
(w)
t =

1

5

(
rv

(d)
t + rv

(d)
t−1d + · · ·+ rv

(d)
t−4d

)
rv

(m)
t−1 is the monthly realized volatility which at time t is given by

the average

rv
(m)
t =

1

22

(
rv

(d)
t + rv

(d)
t−1d + · · ·+ rv

(d)
t−21d

)
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Figure: Comparison among observed realized volatility (5 minutes) for
year 2016 and AMEM(1,1), APMEM(1,1) and AHAR forecasts - DAX
dataset
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The combining methods are based on the following two
combination models:

comb1 model, based on a simple unconstrained Ordinary
Least Squares estimates of the weights. The one-step-ahead
forecast is given by

rvT (1) = α + β1f
(1)
T (1) + β2f

(2)
T (1)

with f
(1)
T (1) and f

(2)
T (1) denote, respectively, the first and

second model forecasts.
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comb2 model, with the combination given by

rvT (1) = α + (β1 + δ1Dt−1)f
(1)
T (1) + (β2 + δ2Dt−1)f

(2)
T (1)

which includes a dummy variable Dt :

Dt =

{
1 if rvt < rvt−1

0 otherwise
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To compare the results of the combination schemes with those
that can be reached by exclusively relying on a single model, we
compute five loss functions:

1 Mean Square Error (MSE);

2 Mean Absolute Error (MAE);
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3 Quasi-Likelihood (QLIKE), defined as

1

n

n∑
i=1

[
rvT+i

rvT+i−1(1)
− ln

(
rvT+i

rvT+i−1(1)

)
− 1

]
with rvT+i being the observed value of the realized volatility
and rvT+i−1(1) is the one-step-ahead forecast for time T + i ,
i = 1, . . . , n.
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4 a first new measure called Asymmetric Mean Square Error
(AMSE), given by

1

n

n∑
i=1

(
1 +

(
εT+i

2

rvT+i

)m

I(εT+i > 0)

)
εT+i

2

where εT+i = rvT+i − rvT+i−1(1).
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5 a second original measure called Asymmetric Mean Absolute
Error (AMAE), given by

1

n

n∑
i=1

(
1 +

(
|εT+i |
rvT+i

)m

I(εT+i > 0)

)
|εT+i |

where, as before, εT+i = rvT+i − rvT+i−1(1).
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Figure: Comparison among MSE, QLIKE, AMSE (m=1,2) loss functions
computed on a series h of evenly spaced forecasts from 0 to 2.
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Figure: Comparison among MAE, QLIKE, AMAE (m=1,2) loss functions
computed on a series h of evenly spaced forecasts from 0 to 2.
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Table: Comparison among AMEM(1,1), AHAR and combination schemes
(in bold the smallest values) - DAX dataset



Table: Comparison among AMEM(1,2), AHAR and combination schemes
(in bold the smallest values) - CAC dataset



Table: Comparison among AMEM(1,2), AHAR and combination schemes
(in bold the smallest values) - AEX dataset



Table: Comparison among APMEM(1,1), AHAR and combination
schemes (in bold the smallest values) - DAX dataset



Table: Comparison among APMEM(1,2), AHAR and combination
schemes (in bold the smallest values) - CAC dataset



Table: Comparison among APMEM(1,2), AHAR and combination
schemes (in bold the smallest values) - AEX dataset
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Conclusions

We have found that combining the AHAR model with
APMEM instead of AMEM causes an improvement in the
accuracy of the forecasts computed using combination
schemes, especially the comb2 model.

This finding holds for DAX and AEX datasets and for all
training periods, whereas for the CAC index there was not any
change in loss function choises when moving from AMEM to
APMEM.
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