NORMAL DISTRIBUTION OF RETURNS OF 65 STOCK EXCHANGE INDEXES

dr hab. prof. SGH Krzysztof Borowski

Assumption of normal distribution of rates of return on financial markets

For example

- Portfolio theory (Markowitz),
- CAPM
- Black-Scholes model of valuating options

The aim of the paper

- To verify the hypothesis on the normal distribution of:
- a) daily,
- b) weekly,
- c) monthly,
- d) quarterly
- e) yearly
- of 65 stock index returns.

Literature

- Bachelier (1900)
- Kendall (1953)
- Osborne (1959)
- Scalas, Kim (2007)
- Barunik, Vacha, Vosvrd (2010)
- Ghahfarokhi i Ghahfarokhi (2009)

Literature

- On the Polish market
 - Bołt, Miłobędzki (1994),
 - Fiszeder (2000),
 - Rokita (2000),
 - Osińska (2006),
 - Witkowska, Kompa (2007)

Methodology

- The paper consists of 3 parts
- Rates of return:

For each of the analyzed indices the following rates of return were calculated (daily rates of return):

a) Close – Close (C-C): $ln\left(\frac{c_t}{c_{t-1}}\right)$ (last session close vs previous session close)

b) Overnight (OV):
$$ln\left(\frac{o_t}{c_{t-1}}\right)$$
 (last session open vs previous session close)

c) Open – Open (O-O): $ln\left(\frac{o_t}{o_{t-1}}\right)$ (last session open vs previous session open)

d) Open – Close (O-C):
$$ln\left(\frac{c_t}{o_t}\right)$$
 (last session close vs last session open)

where:

- C_t closing price in the period t_s
- C_{t-1} closing price in the period t-1,
- Q_t open price in the period t_s
- O_{t-1} open price in the period t-1.

Methodology 2

The choice of the above rates of return results from two premises:

- a transaction takes place at strictly defined moments of the session at the opening or closing prices.
- derives of earlier scientific papers, because most research concentrates solely on the close-close rates.

Methodology – time horizon

- a) Since the first session to 31.06.2017
- b) For the following rates of return:
 - a) daily,
 - b) weekly,
 - c) monthly,
 - d) quarterly
 - e) yearly

Methodology

- Test:
 - Jarque-Bera (JB),
 - Lilliefors (L),
 - Cramer von Mises (CVM),
 - Watson (W)
 - Anderson-Darling (AD).
- p (p value) calculated

The hypothesis

- The hypothesis H_0 was formulated as follows: the distribution of the analyzed index returns is a normal distribution.
- The alternative hypothesis H₁ takes the following form: the distribution of the analyzed index returns does not follow a path of a normal distribution.

Methodology – part II of research

- The hypothesis of the normal distribution of return rates for the following indices: CAC40, DAX, DJIA, FTSE250, NIKKEI and S&P 500 in the period 2013-2016 was verified (for each year)
- For DJIA selected 28 up and down waves

Methodology – part II

- The implemented test in the second part:
 - Jarque-Bera,
 - Kołmorgow-Smirnow,
 - Lilliefors,
 - Cramer von Mises,
 - Watson,
 - Anderson-Darling

Methodology – part II

- The purpose of this study is to demonstrate that the distribution of rates of return for individual indices can be normal in shorter time intervals.
- Part two of the study can be considered as an introduction to the third part.

Metodologia – part III

- p as a metrics
- p calculated for tests: Jarque-Bera,
 Shapiro-Wilk and D'Agostino-Pearson.

Metodologia – part III

- Frequency of p>0,05 for each of the tests, for each K and for each of returns
- (together 3x3x4=36 statistics)

Methodology-rankings

 $S_{I+II+II} = S_I + S_{II} + S_{III}$

where:

 S_{II} - position in the ranking of a given index for Jarque-Bera test, S_{II} - position in the ranking of a given index for Shapiro-Wilk test, S_{III} - position in the ranking of a given index for D'Agostino-Pearson test, As a result 12 rankings were obtained: (4 rates of return: C-C, O-O, O-C and overnight) x (3 investment horizons K: 30, 126 and 252 sessions). Then on the basis of these 12 ratings, the following sum of the ratings was calculated for each of analyzed indexes:

$$S_{I+\dots XII} = {}^{K=30}_{C-C}S + {}^{K=30}_{O-O}S + {}^{K=30}_{O-C}S + {}^{K=30}_{OV}S + {}^{K=100}_{C-C}S + {}^{K=100}_{O-O}S + {}^{K=100}_{O-C}S + {}^{K=100}_{OV}S + {}^{K=252}_{O-C}S + {}^{K=252}_{O-C}S + {}^{K=252}_{OV}S$$

where:

Global

ranking

 $K_X^K S$ - position of a given index in the ranking for a specific time horizon K (K = 30, 126 and 252 sessions) and return type X (C-C, O-O, O-C and overnight).

The sums $S_{I+\dots XII}$ for each of analyzed indexes were used in the process of a global ranking construction.

Main and auxiliary thesis

- The main thesis of the analysis has been formulated as follows: in long time intervals, the returns distributions are not normal distributions.
- As a long time interval, investment horizon covering several years was assumed.
- In turn, the secondary thesis of the research may be expressed as follow: in the shorter investment horizons, the distribution of equity indexes returns may be normal.
- The auxiliary thesis can also be written in a slightly different way: returns of equity indexes are serially normal.

Results

Results – I part

- In case of the daily and weekly rates or return the hypothesis H₀ was rejected in favor of the hypothesis H₁ (for all indexes).
- In case of monthly rates of return there was no reason to reject the H₀ hypothesis for 42 indexes but only for:
 - 4 indexes (C-C)
 - 2 indexes (O-O)
 - 3 indexes (O-C)
- the result obtained with the use of one test were confirmed by results given by another statistical test – see table 1.

Table 1. The value of the parameter *p* for indices for which the obtained results with the use of one test were confirmed by the second test. Values of p> 0.05 marked in bold.

			C-C					0-0					0-C		
Index	J-B	L	CVM	W	A-D	J-B	L	CVM	W	A-D	J-B	L	CVM	W	A-D
FTSEMIB	0.0415	0.1	0.0164	0.165	0.0074	0.024	0.0107	0.0018	0.0016	0.0014	0.1016	0.1	0.0275	0.0282	0.0307
PSI20	0	0.1	0.0784	0.0907	0.039	0	0.0755	0.0362	0.0334	0.0072	0	0	0	0	0
SESESLCT	0.4831	0.1	0.683	0.6672	0.6437	0.4757	0.1	0.7173	0.6995	0.6592	0.4799	0.1	0.6998	0.6848	0.655
TOPIX	0	0.0767	0.0775	0.118	0.1004	0.0005	0.1	0.2413	0.3324	0.3128	0	0.1	0.07	0.1204	0.0837

Quarterly rates of return

- For quarterly rates of return the number of cases when there was no reason to reject the H₀ hypothesis was as follows:
- C-C (16): BUX, FTSE MIB, IBEX35, IPC, MEXICIPC, NZX50, PSI20, RUSSEL*, SAX, SDAX, SESESLCT, SSEBSHARES, TAIEX*, TOPIX, UX, XU100,
- O-O (19): BUX, FTSE MIB, IBEX35, IPC, MEXIXIPC, NZX50, OMXTALIN, PSI20, PSEI20*, RUSSEL, SAX, SDAX, SENSEX*, SESESLCT, SSEBSHARE, TAIEX, TOPIX, UX*, XU100,
- O-C (17): BUX, FTSE MIB, IBEX35, IPC, MEXIXIPC, NZX50, PSI20, RUSSEL*, SAX, SDAX, SESESLCT, SET*, SSEBSHARE, TAIEX, TOPIX, UX, XU100,
- Overnight (4): EOE, HEX, TEXCADX, TOPIX.
- With "*" are marked these indexes when the rejection of the *H*₀ hypothesis was obtained with the use of one test only.

Yearly rates of return

- For yearly rates of return the number of cases when there was no reason to reject the H₀ hypothesis was equal to: 55 (8), 51 (3), 52 (6), 21 (6) for C-C, O-O, O-C and overnight rates of return, respectively.
- The number of cases in parentheses is given when the null hypothesis was rejected by only one test.

Yearly rates of return – part 1

Table 3. The value of the parameter p for yearly equity index rates of return. Values of p> 0.05 marked in bold.

Indeka	Data		00							0-C					Overnight						
		J-B	L	сум	w	A-D	J-B	L	сум	w	A-D	J-B	L	сум	w	A-D	J-B	L	сум	w	A-D
AEX	03.01.1983	0.003	0.0114	0.0221	0.0349	0.021	0.0049	0.0111	0.021	0.0341	0.0231	0.0034	0.0092	0.0242	0.0372	0.0252	0.03697	0.1	0.2814	0.2699	0.3754
ALL Ordination	01.01.1900	0	0.0012	0.0001	0	0.0001	0	0.0031	0.0001	0.0001	0.0001	0	0.0012	0.0001	0	0.0001	0	0	0	0	0
Athen Com	02.01.1987	0.5136	0.1	0.6804	0.7243	0.7225	0.5499	0.1	0.5993	0.6308	0.6983	0.5091	0.1	0.6107	0.6546	0.6833	0.0021	0.0004	0	0	0
BEL20	02.01.1991	0	0.1	0.043	0.0718	0.0194	٥	0.0952	0.0659	0.1096	0.0338	٥	0.0532	0.0405	0.0691	0.0178	0.0097	0.0217	0.0359	0.0551	0.033
BET	31.10.2000	0.0003	0.0134	0.0175	0.0176	0.0115	0.0002	0.0266	0.0131	0.0129	0.009	0.0001	0.0084	0.0084	0.0079	0.0061	٥	0	٥	0	0
Bexerga	12.07.1989	0.0001	0	0	0	0	٥	0.0002	٥	٥	0	٥	0	0	٥	0	٥	0	٥	0	0
Bux	02.01.1991	0.404	0.1	0.3827	0.3448	0.3352	0.4257	0.1	0.4228	0.3848	0.3941	0.4126	0.1	0.4453	0.4034	0.3997	0.0005	0.0001	0	0	0
CAC40	08.01.1965	0.3466	0.1	0.2276	0.2694	0.2524	0.579	0.1	0.5551	0.5839	0.6387	0.454	0.1	0.3151	0.3527	0.3866	0	0	0	0	0
CDAX	15.03.2004	0.0088	0.0514	0.014	0.0196	0.0081	0.0058	0.0446	0.0034	0.0043	0.0022	0.009	0.0368	0.0137	0.019	0.0081	0.8119	0.1	0.08959	0.8871	0.8716
DAX	28.09.1959	0.2016	0.0908	0.1746	0.2253	0.2154	0.1802	0.033	0.0899	0.1267	0.1169	0.2226	0.0941	0.1709	0.2179	0.2109	0	0.0355	0.0071	0.0151	0.0031
DJCA	23.12.1980	0.0146	0.075	0.0441	0.0764	0.0394	0.026	0.067	0.0354	0.0575	0.0389	0.0186	0.0827	0.0546	0.094	0.0505	٥	0	0	0	0
DJIA	02.01.1900	0.0002	0.0288	0.0066	0.0107	0.0051	0.0003	0.0552	0.0131	0.0226	0.0098	0.0002	0.0244	0.0074	0.0125	0.0053	0	0	٥	0	0
DJTA	02.01.1929	٥	0.1	0.1633	0.2622	0.079	0	0.1	0.1363	0.2349	0.0662	٥	0.1	0.1534	0.2476	0.0744	0	0	0	0	0
DJUA	02.01.1929	0.0007	0.0096	0.003	0.0041	0.0034	0.0029	0.0094	0.0032	0.0045	0.0037	0.0003	0.0091	0.0038	0.0051	0.0041	0	0	0	0	0
EOE	02.01.1995	0.0006	0.0004	0.0024	0.0031	0.0026	0.0024	0.002	0.012	0.0183	0.0102	0.0007	0.0004	0.0029	0.0038	0.0033	0.9788	0.1	0.8481	0.8213	0.915
FTSE100	22.10.1992	0.0969	0.0784	0.0181	0.0258	0.0174	0.1273	0.1	0.0432	0.0637	0.0402	0.1053	0.0759	0.0227	0.0324	0.0225	0	0	0	0	0
FTSE250	31.12.1985	0.0139	0.1	_1429	0.2277	0.097	0.0117	0.1	0.0739	0.1317	0.0479	0.017	0.0952	0.1547	0.2424	0.1029	0	0	0	0	0
FTSEMIB	02.01.1999	0.0428	0.0832	0.0196	0.0261	0.0119	0.0284	0.0281	0.0093	0.0117	0.006	0.0262	0.1	0.0161	0.0218	0.0099	0.4554	0.1	0.0713	0.0542	0.0943
HANGSENG	24.11.1969	0.3447	0.1	0.4104	0.4504	0.3642	0.3204	0.1	0.3662	0.4078	0.3287	0.3483	0.1	0.4133	0.452	0.3714	0.1623	0.0584	0.0056	0.0032	0.0047
HEX	02.01.1995	0.4947	0.0529	0.0217	0.0145	0.0334	0.6187	0.0155	0.029	0.0206	0.047	0.4874	0.0491	0.0176	0.0115	0.0282	0	0	0	0	0
IBEX35	05.01.1987	0.5921	0.1	0.681	0.6983	0.7562	0.5908	0.1	0.5858	0.6057	0.7114	0.6113	0.1	0.7647	0.7878	0.8202	0.0001	0.0223	0.0008	0.0004	0.0013
ICEX	31.12.1992	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
рс	08.11.1991	0.7328	0.1	0.5202	0.4795	0.4845	0.7483	1	0.6864	0.6387	0.5801	0.7366	0.1	0.5279	0.4876	0.4826	0	0	0	٥	0
IPSA	02.01.1987	0.6088	0.1	0.2636	0.2564	0.3055	0.7016	0.1	0.4282	0.405	0.4445	0.6111	0.1	0.3019	0.2967	0.3494	0	0	0	0	0
101	04.04.1983	0.1847	0.1	0.0829	0.0659	0.104	0.2096	0.1	0.2209	0.197	0.253	0.1734	0.1	0.087	0.0697	0.1064	0	0	0	0	0
KLCI	03.01.1977	0.2759	0.1	0.2913	0.2733	0.3237	0.375	0.1	0.4667	0.468	0.5109	0.2867	0.1	0.3491	0.334	0.4003	0	0	0	0	0
KOSPI	04.01.1980	0.6223	0.1	0.5438	0.5356	0.5115	0.5535	0.1	0.5757	0.5869	0.5228	0.5791	0.1	0.3538	0.348	0.3667	0.0002	0	0.0001	0.0001	0
MDAX	29.02.1996	0.0505	0.0761	0.0858	0.1267	0.0483	0.0357	0.1	0.0579	0.0935	0.0329	0.0535	0.0763	0.0928	0.1365	0.0519	0.854	0.1	0.7616	0.7197	0.6502

Yearly rates of return – part 2

MERVAL	04.04.1988		0.1	0.1143	0.1184	0.0717	٥	0.0001	0	0	0	0.0006	0.1	0.0235	0.0284	0.0128	٥	0	٥	0	0
MEXICIPC	20.12.1993	0.8358	0.1	0.683	0.6284	0.5925	0.7797	0.1	0.7445	0.6963	0.6765	0.8348	0.1	0.687	0.633	0.5824	٥	0	٥	0	0
MICEX	27.09.1997	0.0924	0.1	0.1559	0.1339	0.1009	0.6609	0.1	0.3521	0.3242	0.3665	0.1441	0.1	0.2237	0.1988	0.1542	٥	0	٥	0	0
NASDAQ 100	01.10.1985	0.513	0.0022	0.011	0.0083	0.0122	0.503	0.022	0.0071	0.0051	0.0085	0.506	0.0023	0.0088	0.0064	0.0099	0.0005	0	٥	0	0
NASDAQCOMP	03.01.1998	0.0036	0.1	0.0138	0.0199	0.0062	0.0039	0.1	0.187	0.0256	0.008	0.0015	0.01	0.0122	0.0185	0.0046	0.0009	0.0101	0.0007	0.0004	0.0004
NIKKEI225	01.03.1914	0.1024	0.1	0.0515	0.0405	0.0588	0.2058	0.1	0.0621	0.0498	0.0859	0.1144	0.1	0.0353	0.0264	0.0457	٥	0	٥	0	0
NZX50	03.01.2001	0	0.0966	0.0234	0.037	0.0071	0.0001	0.1	0.0252	0.0388	0.0083	0	0.0919	0.0232	0.0365	0.0071	0	0	٥	0	0
OMDERIGA	03.01.2000	0.0658	0.1	0.2997	0.3343	0.1337	0.0605	0.1	0.2358	0.2794	0.0947	0.0658	0.1	0.3013	0.3361	0.1347	0.0754	0.0001	٥	0	0
OMIXISTOCKHOLM	30.09.1986	0.2116	0.1	0.1538	0.2025	0.156	0.2298	0.0634	0.0651	0.0557	0.0844	0.1863	0.1	0.1484	0.2044	0.1464	0.002	0.0017	0.0005	0.0003	0.0006
OMECTALIN	03.01.2000	0.0011	0.1	0.0448	0.0718	0.0231	0.0011	0.1	0.434	0.693	0.0231	0.0013	0.1	0.0454	0.0728	0.0239	0.222	0.0055	0.0037	0.0032	0.0079
OMICVILNIUS	01.01.2000	0	0.0866	0.0115	0.007	0.0079	0	0.0333	0.0219	0.0145	0.0125	0	0.0249	0.0104	0.0063	0.0074	0	0	٥	0	0
OSE	03.01.1983	0.06111	0.1	0.5837	0.6847	0.3559	0.0446	0.1	0.5075	0.629	0.3254	0.0618	0.1	0.5919	0.6903	0.3585	٥	0	٥	0	0
PSEI	02.01.1986	0.7539	0.1	0.2912	0.2619	0.2948	0.9439	0.1	0.5634	0.5196	0.5678	0.7316	0.1	0.3017	0.2723	0.3015	0	0	0	0	0
PS120	31.12.1992	0.3487	0.21	0.3627	0.3869	0.3359	0.443	0.1	0.4444	0.4762	0.4716	0.3576	0.1	0.4514	0.4845	0.4135	0.5476	0.0283	0.051	0.0428	0.0675
PX50	07.09.1993	0.1091	0.1	0.6604	0.7452	0.5061	0.2932	0.1	0.7693	0.825	0.6173	0.0836	0.1	0.6338	0.7361	0.4926	0.9651	0.1	0.3207	0.2868	0.4311
RTS	01.09.1995	0.0152	0.1	0.0449	0.0717	0.0313	0.0212	0.1	0.0796	0.1314	0.046	0.0126	0.1	0.0448	0.03	0.03	0.0186	0.001	0.0006	0.0007	0.0005
RUSSEL	22.10.2001	0.4265	0.1	0.3788	0.4332	0.3769	0.4536	0.1	0.4949	0.5462	0.4828	0.4505	0.1	0.4583	0.517	0.4509	0.0405	0.0101	0.0008	0.001	0.0004
SAX	03.07.1995	0.04351	0.1	0.6193	0.602	0.4902	0.4391	0.1	0.508	0.5015	0.4491	0.4538	0.1	0.5842	0.5716	0.5043	0.0442	0	0.0001	0.0001	0.0001
SDAX	15.03.1999	0.2871	0.0862	0.0779	0.0969	0.0887	0.2926	0.0616	0.0699	0.0861	0.0836	0.2855	0.0766	0.0749	0.093	0.0877	0.5323	0.1	0.4582	0.4342	0.3701
SENSEX	03.04.1979	0.0626	0.1	0.9053	0.9346	0.7964	0.4826	0.1	0.8978	0.9138	0.831	0.4691	1	0.9684	0.9762	0.8859	0	0	٥	0	0
SESESLCT	02.01.2003	0.7815	0.1	7622	0.7225	0.7293	0.7536	0.1	0.949	0.9411	0.9108	0.7836	0.1	0.7711	0.7334	0.749		0.0013	٥	0	0
SET	02.07.1987	0.09529	0.1	0.5059	0.4725	0.5531	0.9136	0.1	0.4802	0.4527	0.5086	0.9504	0.1	0.5059	0.4737	0.5351	0.3412	0.0249	0.0006	0.0003	0.0007
SMI	01.07.1988	0.05614	0.1	0.2456	0.2703	0.2974	0.5876	0.1	0.1554	0.1667	0.188	0.6257	0.1	0.2568	0.2743	0.3317	0.0164	0.0003	0.0008	0.001	0.0009
SOFIX	26.11.2001	0	0.0136	0.0037	0.0038	0.0021	٥	0.0183	0.0058	0.0064	0.003	0	0.0132	0.0035	0.0035	0.002	0.8339	0.0003	0.0005	0.0002	0.0017
SP500	02.01.1900	0	0.0707	0.0104	0.0291	0.0048	0	0.0322	0.009	0.0246	0.0042	0	0.0736	0.0114	0.0323	0.0048	0	0	٥	0	0
SPTSXCOMP	03.01.1961	0.0121	0.1	0.02061	0.3356	0.1396	0.0872	0.1	0.6121	0.7262	0.4567	0.0393	0.1	0.4637	0.5996	0.2751	0	0	٥	0	0
SSEBSHARE	04.01.2000	0.9708	0.1	0.5502	0.5071	0.5143	0.8614	0.1	0.8467	0.8272	0.7696	0.9691	0.1	0.5573	0.5121	0.5151	0.3781	0.0198	0.0318	0.013	0.0178
SSECOMP	19.12.1990	0.6804	0.0624	0.0768	0.0609	0.0696	0.9178	0.1	0.1377	0.1164	0.1222	0.6857	0.0585	0.0634	0.0492	0.0599	0.0001	0.0217	0.0009	0.0005	0.0008
STRAITSTIMES	28.12.1987	0.8503	0.1	0.9707	0.9663	0.9272	0.8552	0.1	0.9932	0.9931	0.9749	0.8734	0.1	0.9819	0.9792	0.9481	0.3392	0.0651	0.0387	0.0454	0.0488
TAIEX	05.01.1995	0.4281	0.0042	0.0092	0.0075	0.0144	0.4636	0.0075	0.0486	0.0493	0.0674	0.3551	0.006	0.0165	0.0153	0.0227	0.7351	0.0886	0.0174	0.0123	0.0285
TECDAX	16.09.1999	0.1056	0.014	0.0041	0.0054	0.0041	0.2498	0.0446	0.0085	0.0095	0.0108	0.1016	0.0141	0.0039	0.0051	0.004	0.5781	0.0214	0.053	0.0435	0.0731
TOPIX	22.10.2001	0.4627	0.1	0.3271	0.3264	0.3583	0.7187	0.1	0.4759	0.4683	0.5121	0.448	0.1	0.2819	0.2817	0.3094	0.7078	0.1	0.2528	0.242	0.3326
ux	03.11.1997	0.3761	0.1	0.494	0.5381	0.5114	0.5452	0.1	0.2958	0.3292	0.264	0.459	0.1	0.5141	0.5442	0.5395	0	0	0	0	0
WIG	16.04.1991	0	0.0001	0.0001	0.0001	0	0	0.0001	0.0001	0	0	0	0.0001	0.0001	0.0001	0	0.1013	0.0067	0.0016	0.0019	0.0021
XU100	02.01.1990	0.223	0.1	0.1443	0.1841	0.1124	0.2477	0.0958	0.1374	0.1728	0.1074	0.2558	0.1	0.2158	0.276	0.1726	0.0001	0.0028	0	0	0

Conclusion

• The obtained result permit to formulate the following conclusion:

 The higher the data compression (daily->weekly->monthly->quarterly->yearly), the less number of H₀ hypothesis rejection.

Verification of the hypothesis of normal distribution of returns for the following indexes: CAC40, DAX, DJIA, FTSE250, Nikkei and S&P500 when the investment horizon is equal to one year and during 28 up and down waves for **DJIA** index

	Vaar			C-C			0-0 A-D LB L CVM W A.D						O-C Overnight								
		J-B	L	CVM	W	A-D	J-B	L	CVM	W	A-D	J-B	L	CVM	W	A-D	J-B	L	CVM	w	A-D
	2013	0	0.1	0.0626	0.0612	0.0364	0	0.1	0.0796	0.0763	0.533	0	0.1	0.053	0.501	0.0299	0	0	0	0	0
DΠΑ	2014	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2015	0	0.0697	0.0159	0.0107	0.0205	0	0.071	0.0128	0.0082	0.0149	0	0.1	0.0139	0.0094	0.0158	0	0	0	0	0
	2016	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.0139	0.0108	0.0117
	2013	0	0.0419	0.017	0.019	0.005	0	0.0083	0.005	0.0045	0.0019	0	0.0918	0.0075	0.0079	0.0023	0.0005	0	0	0	0
SP500	2014	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.0091	0.0062	0.0048
01500	2015	0	0.0073	0.0007	0.0003	0.0008	0	0.0085	0.0011	0.0005	0.0013	0.0082	0.0012	0.0007	0.0011	0	0	0.03	0.0206	0.0135	0.0275
	2016	0	0	0	0	0	0	0	0	0	0	0	0.0001	0	0	0	0.0046	0.0385	0.1472	0.1323	0.1836
	2013	0.0004	0.0075	0.004	0.0025	0.0009	0.0038	0.0042	0.0005	0.0004	0.0002	0	0.0017	0.0001	0.0001	0	0	0	0.0001	0	0
DAX	2014	0.0351	0.0009	0.0001	0	0.0001	0.1517	0.0209	0.0137	0.0126	0.0123	0.01945	0.0015	0.0035	0.0031	0.0042	0	0.0146	0.0001	0.0001	0
	2015	0.2053	0.1	0.0707	0.062	0.1028	0.0349	0.0391	0.0504	0.0562	0.0355	0.0265	0.048	0.0946	0.0132	0.1034	0	0.0051	0.0003	0.0001	0.0001
	2016	0	0.005	0.0007	0.0006	0.0005	0	0	0	0	0	0	0.0051	0.0009	0.0004	0.0005	0	0	0	0	0
	2013	0.0001	0.0858	0.0074	0.0045	0.0058	0	0.1	0.0183	0.0209	0.0103	0	0.1	0.014	0.011	0.0084	0	0	0	0	0
CAC40	2014	0.0002	0.0146	0.0032	0.002	0.0023	0.0002	0.0008	0.0005	0.0003	0.0003	0	0.0034	0.0028	0.0024	0.0038	0	0.004	0.0001	0	0
	2015	0.0005	0.0326	0.0028	0.0017	0.002	0	0.00435	0.0062	0.0072	0.0023	0.0146	0.0409	0.0206	0.0303	0.0272	0	0	0	0	0
	2016	0	0.0004	0	0	0	0	0	0	0	0	0	0.1	0.1406	0.1166	0.0894	0	0	0	0	0
	2013	0	0.0768	0.0125	0.0155	0.0079	0	0.1	0.0183	0.0209	0.0103	0	0.1	0.014	0.011	0.0084	0	0	0	0	0
FTSE250	2014	0.4816	0.1	0.6962	0.708	0.6796	0.4888	0.1	0.6872	0.6928	0.6745	0.4836	0.1	0.7217	0.7342	0.6991	0	0	0	0	0
	2015	0	0.1	0.0145	0.0096	0.0106	0	0.1	0.0138	0.0092	0.0102	0.1	0.0145	0.0096	0.0096	0.0106	0	0	0	0	0
	2016	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2013	0	0.0786	0.0518	0.0887	0.0153	0.0068	0.1	0.3419	0.3491	0.2771	0	0.0002	0.0001	0.00001	0	0.0632	0.1	0.1423	0.1439	0.0576
Nikkei225	2014	0.0005	0.0013	0.0001	0	0	0	0.1	0.3697	0.3372	0.3716	0	0.0031	0.0006	0.0003	0.0002	0.2222	0.0389	0.0665	0.0918	0.0558
	2015	0	0	0	0	0	0	0.002	0.0006	0.0007	0.0001	0	0.0001	0	0	0	0.2228	0.1	0.2227	0.2803	0.0633
	2016	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.4999	0.0803	0.1679	0.1433	0.2268

Table 4. Results of testing the null hypothesis for each year (in the period of (2013-2016)

- If for individual index, at least two out of six tests do not allow to reject the null hypothesis, the distribution of returns represents a normal distribution in period of the analyzed years. Such outcomes were registered for:
 - DJIA: O-C (2013), O-O (2013) and O-C (2013),
 - DAX: C-C (2015), O-O (2015) and O-C (2015),
 - S&P 500: Overnight (2016),
 - FTSE250: C-C (2014), O-O (2014) and O-C (2014),
 - CAC40: O-C (2016),
 - NIKKEI225: C-C (2013), O-O (2013 and 2014) and Overnight (2013, 2014, 2015 and 2016).

Up and down waves of DJIA

[The state begining	The state end	Direction of price movement			c-c					0-0					o-c					Overnig	bt	
				J-B	L	CVM	W	A-D	J-B	L	сум	w	A-D	J-B	L	сум	w	A-D	J-B	L	сум	w	A-D
1	18.06.1901	15.10.1903	Down	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	15.10.1903	18.01.1906	Ug	0	0.0001	0	0	0	0	0.0001	0	0	0	0	0.0001	0	0	0	0	0.0001	0	0	0
3	18.01.1906	21.11.1907	Down	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	21.11.1907	05.11.1909	Us	0	0.0146	0.0004	0.0002	0.0001	0	0.0146	0.0004	0.0002	0.0001	0	0	0	0	0	0	0.0146	0.0004	0.0002	0.0001
5	05.11.1909	24.12.1914	Down	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	24.12.1914	03.11.1919	Ug	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	03.11.1919	25.08.1921	Down	0	0.0366	0.0054	0.0044	0.0014	0	0.0366	0.0054	0.0044	0.0014	0	0	0	0	0	0	0.0366	0.0054	0.0044	0.0014
8	25.08.1921	29.08.1929	Ug	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	29.08.1929	09.07.1932	Down	0	0.0001	0	0	0	0	0.0001	0	0	0	0	0	0	0	0	0	0.0001	0	0	0
10	09.07.1932	10.03.1937	Ug.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	10.03.1937	29.04.1942	Down	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	29.04.1942	14.12.1961	Ųg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	14.12.1961	26.06.1962	Down	0	0.0001	0	0	0	0	0.0004	0	0	0	0	0.0003	0	0	0	0	0	0	0	0
14	26.06.1962	11.02.1966	Цg	0	0	0	0	0	0	0	0	0	0	0	0.0003	0	0	0	0	0	0	0	0
15	11.02.1966	11.10.1966	Down	0.8069	0.1	0.9254	0.9126	0.9216	0.8024	0.1	0.9568	0.9493	0.9551	0.7843	0.1	0.9115	0.8974	0.926	0	0	0	0	0
16	11.10.1966	06.12.1968	Ug	0	0.1	0.4066	0.4751	0.1408	0.0016	0.1	0.6493	0.7777	0.3418	0.0017	0.1	0.7348	0.8286	0.4437	0	0	0	0	0
17	06.12.1968	26.05.1970	Down	0	0.0697	0.0495	0.0379	0.017	0.0012	0.0857	0.0948	0.0845	0.03	0.0017	0.1	0.1143	0.101	0.0464	0	0	0	0	0
18	26.05.1970	12.01.1973	Ug	0	0.0002	0	0	0	0	0.0006	0	0	0	0	0.0011	0.0001	0	0	0	0	0	0	0
19	12.01.1973	10.12.1974	Down	0.0003	0.0449	0.068	0.1309	0.0301	0.0044	0.1	0.4198	0.6594	0.3007	0.0022	0.0513	0.1715	0.365	0.0845	0	0	0	0	0
20	10.12.1974	24.09.1976	Ug	0.164	0.1	0.3175	0.4074	0.3102	0.1848	0.1	0.2754	0.3767	0.2114	0.0936	0.1	0.1432	0.1576	0.1202	0	0	0	0	0
21	24.09.1976	02.03.1978	Down	0.4173	0.0826	0.1705	0.1607	0.2233	0.8806	0.1	0.1582	0.1402	0.1797	0.4098	0.0923	0.1062	0.089	0.1247	0	0	0	0	0
22	02.03.1978	25.08.1987	Ug	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23	25.08.1987	20.10.1987	Down	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	20.10.1987	20.01.2000	Us	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25	20.01.2000	11.10.2002	Down	0	0.0083	0.0002	0.0001	0	0	0.0175	0.0002	0.0001	0	0	0.0034	0.0001	0	0	0	0	0	0	0
26	11.10.2002	12.10.2007	Ug	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27	12.10.2007	10.03.2009	Down	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28	10.03.2009	31.03.2017	Ug	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Results- Part III

Figure 2. Value of parameter p for DJIA in the period 02.01.2015 - 31.03.2017 when carrying out three different tests and K = 30

Results Part III (DJIA)

Figure 3. The percentage of cases where there was no reason for rejecting the null hypothesis for DJIA returns with the use of Jarque-Bera test, depending on K (change of K: every 1 unit)

Results – Part III (DAX)

Figure 4. The percentage of cases where there was no basis for rejecting the null hypothesis for DAX returns with the use of Jarque-Bera test, depending on *K* (change of K: every 5 units)

Results Part III

Figure 5. The percentage of cases where there was no basis for rejecting the null hypothesis for CAC40 index returns with the use of Jarque-Bera test, depending on *K* (change *K*: every 5 units)

Figure 6. The percentage of cases where there was no basis for rejecting the null hypothesis for FTSE250 index returns with the use of Jarque-Bera test, depending on K (change K: every 5 units)

Figure 7. The percentage of cases where there was no basis for rejecting the null hypothesis for Nikkei index returns with the use of Jacque Bera test, depending on K (change K: every 5 units)

Source: own calculations

Figure 8. The percentage of cases where there was no basis for rejecting the null hypothesis for S&P 500 index returns with the use of <u>Jacque-Bera</u> test, depending on *K* (change *K*: every 5 units)

Results - Part III

Figure 9. The percentage of cases where there was no reason for rejecting the null hypothesis for six main indexes returns with the use of Jarque-Bera, D'Agostino-Pearson and Shapiro-Wilk tests, depending on *K* (K=30, 126 and 252 sessions) and C-C rates of return

Results – Part III

- For small *K*, the highest percentage of non-rejecting null hypothesis was observed for the DAX index, followed by CAC40, DJIA, S&P500, FTSE250 and NIKKEI – see figure 9.
- With the increase of the parameter K, this order remained stable. For K=252 the deference in percentage of non-rejection null hypothesis between DAX and NIKKEI was higher than for K=30.

Ranking of equity indices due to the proximity of their rates of return to the normal distribution

_		· · · · ·				· · · · ·								
			30 ses	sions			126 şe	ssions			252 şe	ssions		
		C-C	0-0	0-C	ov	C-C	0-0	0-C	ov	C-C	0-0	0-C	ov	Total
1	AEX	8	24	9	6	4	15	5	6	3	10	3	5	1
2	All Ordinaries	15	14	35	49	11	7	20	38	4	4	11	23	13
3	Athex Composite	53	52	46	23	- 54	50	44	18	53	50	42	19	40
- 4	BEL20	24	30	36	9	22	34	43	10	27	37	39	11	25
- 5	BET	55	56	59	38	55	55	57	39	55	54	55	43	55
6	Boxespa	10	- 5	4	62	9	- 5	- 4	60	6	- 5	5	57	15
- 7	BUX	49	42	15	26	44	40	22	30	41	39	21	33	35
8	CAC40	29	36	7	- 7	29	36	- 7	8	26	32	6	9	15
9	CDAX	6	11	24	2	5	17	31	2	12	29	39	2	1
10	DAX	7	2	27	3	7	4	24	3	7	6	29	3	5
11	DJCA	25	27	44	32	20	25	39	28	16	23	37	29	29
12	DJIA	34	21	33	60	35	20	29	54	37	19	26	45	38
13	DJTA	43	43	48	50	43	39	46	42	39	34	40	37	4(
14	DJUA	48	35	50	57	47	37	47	57	45	38	47	50	52
15	ROR	4	6	17	11	3	6	16	0	6	8	14	8	1
16	FSE100	50	35	31	47	50	42	36	51	50	45	43	52	50
17	FTSE250	20	0	35	12	30	0	30	12	35	12	27	12	10
19	FTSEMIRTEI	10	22	10	47	12	22	20	50	16	25	10	54	21
10	LANC STAC	22	10	26		10	10	20		12	12	10		1
20	HANG SENG	20	19	20	2	10	19	£1		17	17	19	60	
20	HEA	28	37	01	21	28	37	02	22	00	39	02	00	0.
21	IBEX	14	18	25	0.5	19	22	35	01	21	19	30	01	52
22	ICEX	37	40	37	22	37	42	34	52	32	40	31	47	44
23	IPC .	00	01	23	40	59	01	52	45	57	28	52	40	2
24	IPSA	52	22	52	33	54	20	54	30	54	20	20	30	54
25	JCI	48	37	12	10	41	32	9	7	31	24	9	7	2
26	KLCI	9	10	12	12	13	16	15	14	19	22	20	21	9
27	KOSPI	39	31	47	54	42	38	48	46	43	43	50	41	49
28	MDAX	30	28	43	56	31	27	45	50	33	30	46	40	42
29	MERVAL	51	51	49	25	51	52	50	24	48	51	48	22	49
30	MEXICIPC	19	17	28	39	15	14	18	37	14	13	13	32	21
31	MICEX	54	53	56	- 4	52	52	55	- 4	52	49	54	4	43
32	NASDAQ100	16	9	9	59	12	8	8	59	8	7	7	55	20
33	NASDAQCOMP	59	60	58	61	60	58	58	62	60	58	57	62	62
34	NIKKEI	14	15	19	29	16	13	18	23	13	9	12	16	10
35	NZX50	56	54	55	43	56	54	56	45	56	55	58	50	50
36	OMXRIGA	64	64	62	48	64	64	61	57	64	63	59	58	63
37	OMXSTOCKOLM	21	12	1	37	23	19	12	32	28	20	24	26	19
38	OMXTALIN	46	47	45	42	50	47	49	42	51	52	51	42	53
39	OMXVILNUS	36	48	42	19	33	46	37	21	30	42	26	26	3
40	OSE	26	26	20	10	33	20	32	15	34	31	30	15	24
41	PSEI	44	44	54	37	45	44	53	42	47	45	50	51	5
42	PSI20	31	45	40	17	37	49	40	17	40	40	42	10	20
43	PX50	41	25	30	34	40	26	3.9	32	42	27	34	20	2'
40	DTC	1	- 23		- 24	40	20	20	52	2	41	- 24	29	2
44	R13	00	00	00	35	00	00	00	29	00	00	00	29	0.
45	KUSSEL	42	51	51	15	48	53	51	20	49	53	53	27	4
46	SAX	33	23	10	27	28	21	10	22	23	11	9	21	10
47	SDAX	45	38	16	30	46	34	14	35	46	35	18	39	33
48	SEECOM	17	29	20	24	24	29	23	29	36	34	32	38	2
49	SENSEX	57	58	57	41	57	59	59	48	58	61	61	56	5
50	eperet or	62	62	64	20	62	64	64	62	62	64	64	62	1 at

51	SET	61	59	60	45	61	61	60	48	61	60	60	52	59
52	SMI	27	49	13	31	26	49	13	27	24	49	15	24	30
53	SOFIX	35	33	41	28	38	44	42	33	44	41	45	34	41
- 54	SP500	5	20	14	14	7	24	11	26	9	28	18	35	12
55	SPTSXCOM	40	42	2	16	34	31	3	13	23	21	4	10	17
56	SSEBSHARE	62	62	63	45	62	62	63	44	62	63	63	45	60
57	Straits Times	38	40	40	20	39	45	42	19	38	46	44	19	40
- 58	TAIEX	3	14	5	8	8	- 11	6	11	11	15	10	14	3
59	TECDAX	2	1	3	52	2	1	2	53	2	3	2	50	7
60	TOPIX	21	33	21	22	22	35	27	25	26	37	28	30	26
61	TSE300	12	3	32	1	14	2	28	1	19	2	33	1	6
62	UK100	11	16	30	64	11	13	27	64	10	14	24	64	31
63	UX	1	4	6	35	1	3	1	34	1	1	1	31	4
64	WIG	22	7	23	65	25	10	35	65	29	16	35	65	34
65	XU100	33	40	23	21	27	31	22	16	21	26	22	13	23

For example, for K = 30 sessions and C-C rates of return the first three places were ranked as follows: UX, TECDAX and TAIEX, while the last three were listed in the order: SESESLCT, OMXRIGA and RTS.

In the total ranking, the top three places were: AEX, EOE and TAIEX, and the last three: OMXRIGA and equally placed: RTS and SESESLCT

Conclusions

- Some of the conducted calculations prove unequivocally that the distribution of daily returns of equity indexes is not a normal distribution, thus confirming the results obtained by other researchers such as Kendall (1953), Fama (1976), Barunika et al. (Barunik, Vacha, Vosvrda, 2010).
- This remark applies to C-C rates of return

Conclusions

 The research shows also that the distribution of the remaining daily returns, e.g. O-O, C-O and overnight, calculated for the analyzed equity indexes does not follow a path of a normal distribution.

Conclusions

- It has been proved that the distribution of returns can be normal only in given time intervals.
- Time intervals can be set as individual years or up and down waves.
- The obtained results are consistent with those of Piasecki and Tomasik [Piasecki, Tomasik 2013] who proved the normal distribution of returns in certain upward and downward price movements on the Polish market.

Conslusions – stock index ranking

 As a result, it was found that the position of the index in the ranking is not dependent on the date of its first publication, and hence on the number of rates of return possible to calculate for analyzed index, but on the distribution of these rates of return. Analysis of the results obtained for K = 30 sessions concludes that for such short time interval, a sharp index change leads to a violent decrease in the value of parameter *p*.

Figure 8. The p-parameter chart for the DJIA index, K = 30, the Jarque-Bera test, the return rate (C-C) and the annualized standard deviation (p-value and level 0.05- left scale, C-C return and standard deviation - right scale)

For example, with a strong increase in volatility on 19.08.2015, the value of *p* dropped below the trigger value of 0.05. Explaining the decrease in the value of parameter *p* below 0.05 for K = 126 and K = 252 sessions becomes more complex issue and requires further investigation.

Further research

- Other markets
 - commodities
 - -FX

Literature

- Affleck-Graves J., McDonald B., Nonnormalities and test of asset pricing theories, Journal of Finance, 1989, pp. 889-908.
- Bachelier L., Theorie de la speculation, Annales de l'Ecole Normal Superieure, ser. 3, XVII 1900, p. 21-86
- Barunik J., Vacha L., Vosvrda M., Tail behavior of the Central European stock markets during the financial crisis, Czech Economic Review, Vol. 4, 2010, pp. 281-294.
- Bołt T., Miłobędzki P., The Warsaw Stock Exchange in the period 1991-1993. Quantitative Problems of Return, Economics of Planning, Vol. 27, 1994, s. 211-226.
- Bookstaber R., McDonald J., A general distribution for describing security price returns, Journal of Business, Vol. 60, 1987, pp. 401-424.
- Clark P., A subordinated stochastic process model with finite variance for speculative prices, Econometrica, Vol. 41, 1973, pp. 135-156.
- Fama E., The behavior of stock market prices, Journal of Business, Vol. 38, 1965, pp. 34-105.
- Fama E., Foundations of finance, Basic, New York 1976.
- Fiszeder P., Statystyczne i dynamiczne własności stóp zwrotu na przykładzie światowych indeksów giełdowych, Nasz Rynek Kapitałowy, Vol. 109, 2000, s. 187-197
- Ghahfarokhi M., Ghahfarokhi P., Applications of stable distributions in time series analysis, computer sciences and financial markets, International Scholarly and Scientific Research & Innovation, Vol. 3, 2009, s. 132-136.
- Harris L., Cross-security tests of the mixture of distributions hypothesis, Journal of Financial and Quantitative Analysis, Vol. 21, 1986, pp. 39-46.
- Kendall M., The analysis of economic time series Part I: prices, Journal of Royal Statistical Society, Series A, Vol. 116, 1953, s.11-25.
- MacKinlay C., Richardson M., Using generalized method of moments to test mean-variance efficiency, Journal of Finance, Vol. 46, 1991, pp. 511-527.
- Osborne M., Brownian motion in the stock market, Operations Research, Vol. 7. 1959, s. 145-173.
- Osińska M., Ekonometria finansowa, Państwowe Wydawnictwo Ekonomiczne, Warszawa 2006.
- Piasecki K., Tomasik E., Rozkłady stóp zwrotu z instrumentów polskiego rynku kapitałowego, edu-Libri, Kraków-Warszawa 2013.
- Richardson M., Smith T., Multivariate normality in stock returns, Journal of Business, Vol. 66, 2, 1993, pp. 295-321.
- Rokita P., Próba estymacji VaR na rynku polskim, [w:] Tarczyński W. (red.), Rynek kapitałowy, Skuteczne inwestowanie, materiały konferencyjne, część I, Wydawnictwo Naukowe Uniwersytetu w Szczecinie, Szczecin 2007.
- Scalas E., Kim K. The art of fitting financial time series with Levy stable distributions, Korean Journal of Physics, Vol. 50, 2007, s. 105-111
- Witkowska D., Kompa K., Analiza własności stop zwrotu akcji wybranych spółek, (w:) Tarczyński W. (red.), Rynek kapitałowy, Skuteczne inwestowanie, materiały konferencyjne, część I, Wydawnictwo Naukowe Uniwersytetu w Szczecinie, Szczecin 2007.