Extracting the Information Shocks form the Bank of England Inflation Density Forecasts

Carlos Díaz (cdv7@leicester.ac.uk)

Warsaw, 15 September 2017

Econometric Research in Finance Workshop

Carlos Díaz (ERFIN 2017)

Extracting Information Shocks

Warsaw, 15 September 2017

Carlos Díaz (ERFIN 2017)

Warsaw, 15 September 2017

- The quarterly forecast round lasts for around six weeks.
- Structured as a series of discussions between the Monetary Policy Committee (MPC) and other staff members.
- Milestones:
 - Publication of the Quarterly National Accounts data by the ONS.
 - The Benchmark meeting (3 weeks before forecast publication):
 - First formal forecasts presented to the MPC.
 - Review of new data released since last forecast and latest international forecasts.
 - The Key Issues meeting (2 weeks before forecast publication):
 - Detailed assessment of core aspects of the forecasts.
 - Revision of assumptions, etc.
 - The Draft meeting (1 week before forecast publication):
 - Staff will revise forecasts.
 - New forecasts presented to the MPC.
 - **Sign-off of the final forecasts** as the 'best collective judgement' of the MPC.

Density forecasts are constructed using the Two Piece Normal (TPN) distribution.

$$f(x) = \begin{cases} A \exp \left[-\frac{(x-\mu)^2}{2\sigma_1^2} \right] & \text{if } x < \mu \\ A \exp \left[-\frac{(x-\mu)^2}{2\sigma_2^2} \right] & \text{otherwise} \end{cases}$$
(1)

with $A = \sqrt{2/\pi} (\sigma_1 + \sigma_2)^{-1}$.

- The parameters of the TPN for the following 12 quarters are released in the Quarterly Inflation Report **COR**.
- Staff produces forecasts using a DSGE model (COMPASS since November 2011).
- There is a component of judgement in published forecasts.

- **Research problem**: How to extract the density of the 'shocks of information' perceived by the MPC between two releases.
- Why?
 - We can obtain a measure of (ex ante) inflation uncertainty.
 - We can test dynamically the efficiency of forecasts.
 - We can measure the incorporation of news to subsequent forecasts.
- (Non-comprehensive) literature review:
 - Uncertainty measures: Jurado, Ludvigson and Ng (2015); Bloom (2009); Baker, Bloom and Davis (2013); Clements (2014), Giordani and Soderling (2003); Lahiri and Liu (2006); Patton and Timmermann (2010); Charemza, Díaz and Makarova (2015).
 - Evaluation of the BoE fan charts: Clements (2004); Elder et al. (2005); Wallis (2004); Mitchell and Hall (2005); Dowd (2008); Mitchell and Wallis (2011); Gneiting and Ranjan (2011); Galbraith and van Norden (2012); Fawcet et al. (2015); Bank of England (2015).
 - Forecast efficiency based on revisions: Mankiw and Saphiro (1986); Nordhaus (1987); Mitchell (2008); Patton and Timmermann (2012).

- Extracting the density of shocks via convolutions.
- Measure of *ex-ante* inflation uncertainty.
- Measure of information absorption.
- Empirical results.
- Sonclusions and further work.

Extracting the Density of the Shocks of Information

- Assume we want to forecast the density of a random variable z_{t+h} .
- At moment t a forecast for z_{t+h}, say z_{t+h|t}, is produced in the form of a density forecast f_{t+h|t}(·).
- At moment t + 1, a new forecast for z_{t+h}, say z_{t+h|t+1}, is also produced in the form of a density forecast f_{t+h|t+1}(·).
- $z_{t+h|t+1}$ is a revision of $z_{t+h|t}$ such that

$$z_{t+h|t+1} = z_{t+h|t} + \epsilon_{t+h|t+1},$$
(2)

- e_{t+h|t+1} can be interpreted as the shock of information perceived by
 the forecaster between t and t + 1 and incorporated into the forecast.
- Can we recover the density of $\epsilon_{t+h|t+1}$?

Notice that

$$\epsilon_{t+h|t+1} = z_{t+h|t+1} - z_{t+h|t}, \tag{3}$$

• Let X and Y be two independent random variables with densities $f_X(\cdot)$ and $f_Y(\cdot)$. The density of Z = X - Y is

$$f_Z(t) = (f_X * f_Y)(t) = \int_{-\infty}^{\infty} f_X(\tau) f_Y(\tau - t) d\tau$$

• Let X and Y be two dependent random variables with joint density $f_{XY}(\cdot, \cdot)$. The density of Z = X - Y is

$$f_Z(t) = \int_{-\infty}^{\infty} f_{XY}(\tau, \tau - t) d\tau$$

Copulas: Specification of the Joint Density

• Sklar (1959): Given the marginal cdfs $F_{t+h|t}(\cdot)$ and $F_{t+h|t+1}(\cdot)$, then

$$\tilde{F}_{z_{t+h|t+1}z_{t+h|t}}(x_1, x_2) = C\left[F_{t+h|t+1}(x_1), F_{t+h|t}(x_2)|\theta\right], \qquad x_1, x_2 \in \Re$$
(4)

where the bivariate copula $C(\cdot, \cdot | \theta)$ is unique if the marginals are continuous and $\theta \in \Theta^m$.

• Joint probability density function

$$\tilde{f}_{z_{t+h|t+1}z_{t+h|t}}(x_1, x_2|\theta) = c \left[F_{t+h|t+1}(x_1), F_{t+h|t}(x_2)|\theta \right] f_{t+h|t+1}(x_1) f_{t+h|t}(x_2),$$
(5)

where

$$c(u_1, u_2|\theta) = \frac{\partial^2 C(u_1, u_2|\theta)}{\partial u_1 \partial u_2}.$$

• The density of $\epsilon_{t+h|t+1}$ could be recovered as:

$$\tilde{f}_{\epsilon,t+1}(z|\theta) = \int_{-\infty}^{\infty} \tilde{f}_{z_{t+h|t+1}z_{t+h|t}}(x,x-z|\theta)dx.$$
(6)

Copulas: Estimation of the Copula Parameter

- The parameters θ in (5) can be estimated by maximum likelihood (IFM method, Joe and Xu, 1996) but
 - We don't (necessarily) have data.
 - We would need to assume parameter constancy.
- As $z_{t+h|t}$ and $\epsilon_{t+h|t+1}$ are independent by construction, we can approximate $f_{t+h|t+1}(\cdot)$ as

$$\tilde{g}_{t+h|t+1}(z|\theta) = \int_{-\infty}^{\infty} f_{t+h|t}(z-x) f_{\epsilon,t+1}(x|\theta) dx.$$
(7)

• We can estimate θ every revision minimizing the KLIC (Mitchell and Hall, 2005):

$$\hat{\theta}_{MDE} = \arg\min_{\theta} \int_{-\infty}^{\infty} f_{t+h|t+1}(x) \ln\left[\frac{f_{t+h|t+1}(x)}{\tilde{g}_{t+h|t+1}(x|\theta)}\right] dx.$$
(8)

For every revision and every forecast horizon we have an estimate of θ.

- Only two consecutive density forecasts for the same fixed point event are needed.
- A different copula parameter is estimated for every vintage (and forecast horizon).
- Dependence between revisions is dynamic.
- The density of the information shock can be obtained for events that have not yet happened (*ex ante* measures).
- The method provide consistent estimators of the copula parameter (Akaike, 1973; Soofi, 2000).

A Measure of News Absorbtion

• By the convolution theorem (e.g. Bracewell, 1999), the Fourier transform of $f_{t+h|t+1}(\cdot)$ is

$$FT[f_{t+h|t+1}(z)] \equiv s_{t+h|t+1}(\lambda) = s_{t+h|t}(\lambda)s_{\epsilon,t+1}(\lambda), \qquad \lambda \in [-\pi,\pi].$$
(9)

where

$$s_{t+h|t+1}(\lambda) = \int_{-\infty}^{\infty} f_{t+h|t+1}(z) e^{-i\lambda z} dz$$

• Measure of news absorbtion at frequency λ :

$$d_\epsilon(\lambda) = rac{\ln[s_{\epsilon,t+1}(\lambda)]}{\ln[s_{t+h|t+1}(\lambda)]}, \qquad 0 \leq d_\epsilon(\lambda) \leq 1.$$

• Aggregating at all frequencies

$$Abs_{t+h|t+1} = rac{1}{2\pi} \int_{-\pi}^{\pi} d_{\epsilon}(\lambda) d\lambda$$
 (10)

Application: Database Description

- The Bank of England produces inflation density forecasts since 1993.
- Forecasts produced for the next 12 quarter (8 until 2013Q2)
- Inflation targeting starts in 1992.
- BoE targeted RPIX inflation until December 2003 (CPI since).
- MPC granted independence in 1998.
- Period studied: 1998Q1-2015Q4.
- Results for constant interest rates assumption.
- Density of the information shocks extracted for every vintage and forecast horizon.
- Copula used: Frank (Frank, 1979; Genest, 1987).
 - Allows for negative dependence.
 - Symmetric dependence.
 - No tail dependence.

Estimation Results: KLIC Values at the Minimum

Moments of the Information Shocks

Carlos Díaz (ERFIN 2017)

Extracting Information Shocks

Warsaw, 15 September 2017

Correlation of $Var[\epsilon_{t+h}(h)]$ with uncertainty measures

		Correlatio	n	p-value			
h	EPU	JLN-F	JLN-M	EPU	JLN-F	JLN-M	
1	0.6634	-0.2778	-0.3664	0.00	0.01	0.00	
2	0.6764			0.00			
4	0.6162	0.0079	-0.3526	0.00	0.47	0.00	
8	0.5215			0.00			

э

Measures of News Absorbtion

Carlos Díaz (ERFIN 2017)

Robustness (Vintage: 2015Q4)

	h=1	h=2	h=3	h=4	h=5	h=6	h=7	h=8	
	Gaussian								
$\hat{ heta}$	0.999	0.999	0.999	0.999	0.999	0.990	0.999	0.999	
KL divergence	0.3644	0.2479	0.1323	0.0550	0.0428	0.0225	0.0418	0.0618	
Mean	-0.2338	-0.3611	-0.4770	-0.5786	-0.5916	-0.6172	-0.5852	-0.5416	
Variance	0.0739	0.0891	0.0274	0.0126	0.0243	0.0389	0.0310	0.0177	
Skewness	0.7307	1.3128	5.4910	3.0900	2.6214	-0.5947	1.8751	2.6683	
				Frank					
$\hat{ heta}$	13.1095	21.2762	27.4918	21.5263	16.1350	18.6482	20.6416	17.1974	
KL divergence	0.1891	0.0770	0.0288	0.0135	0.0118	0.0085	0.0105	0.0143	
Mean	-0.2599	-0.3704	-0.4720	-0.5721	-0.5820	-0.6171	-0.5798	-0.5300	
Variance	0.2176	0.1897	0.1575	0.2210	0.3465	0.2952	0.2493	0.3550	
Skewness	0.1801	0.2636	0.3390	-0.0216	-0.0913	-0.1209	-0.1392	-0.0861	
	Farlie-Gumbel-Morgenstern								
$\hat{ heta}$	1	1	1	1	1	1	1	1	
KL divergence	0.3426	0.2593	0.2070	0.1658	0.1507	0.1471	0.1500	0.1590	
Mean	-0.2600	-0.3703	-0.4713	-0.5729	-0.5861	-0.6283	-0.5917	-0.5476	
Variance	0.8116	1.3960	1.9625	2.3160	2.4741	2.5512	2.6261	2.7686	
Skewness	0.0561	0.0420	0.0319	-0.0036	-0.0268	-0.0592	-0.0792	-0.0739	
	Clayton								
$\hat{ heta}$	38.1592	50.0000	34.8246	14.5060	32.2263	11.8634	17.1247	32.9567	
KL divergence	0.3466	0.2062	0.1354	0.0881	0.0516	0.0626	0.0529	0.0666	
Mean	-0.2213	-0.3263	-0.4715	-0.5822	-0.5877	-0.6350	-0.6070	-0.5438	
Variance	0.1397	0.1727	0.1071	0.1497	0.0763	0.1788	0.1177	0.0578	
Skewness	0.4184	1.1836	0.4278	-0.5534	-0.0029	-0.9820	-0.7467	0.9347	
	Gumbel								
$\hat{ heta}$	9.2506	50.1587	13.5746	10.1426	9.4449	9.1797	10.0401	11.7277	
KL divergence	0.3340	0.1808	0.1349	0.0636	0.0378	0.0255	0.0360	0.0530	
Mean	-0.2890	-0.4679	-0.4888	-0.5833	-0.5851	-0.6265	-0.5888	-0.5318	
Variance	0.1148	0.1263	0.0646	0.0682	0.0750	0.0801	0.0728	0.0611	
Skewness	0.3956	0.6109	1.8140	0.9706	0.3930	0.3429	0.2493	0.6306	

Carlos Díaz (ERFIN 2017)

Extracting Information Shocks

Warsaw, 15 September 2017

- A method to extract the density of the shocks of information is proposed.
- The method is based on density forecast revisions.
- A new measure of *ex-ante* inflation uncertainty is proposed.
- A measure of news absorbtion is proposed.
- Extensions:
 - Dynamic efficiency tests of density forecasts (Mincer-Zarnowitz, Nordhaus).
 - Effect of inflation uncertainty on macroeconomic and financial variables.
 - Uncertainty spillovers.