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Introduction and motivation

More accurate forecasts could:

help to pursue political and economic goals at the country level

support investment and business decisions at the firm level

However

are commodity prices forecastable?

can we consistently beat no-change forecast?

What if ...

we allow for nonlinearities in the forecasting model?

Zuzanna Karolak Commodity prices forecasting using autoregressive nonlinear models



Introduction and motivation

More accurate forecasts could:

help to pursue political and economic goals at the country level

support investment and business decisions at the firm level

However

are commodity prices forecastable?

can we consistently beat no-change forecast?

What if ...

we allow for nonlinearities in the forecasting model?

Zuzanna Karolak Commodity prices forecasting using autoregressive nonlinear models



Introduction and motivation

More accurate forecasts could:

help to pursue political and economic goals at the country level

support investment and business decisions at the firm level

However

are commodity prices forecastable?

can we consistently beat no-change forecast?

What if ...

we allow for nonlinearities in the forecasting model?

Zuzanna Karolak Commodity prices forecasting using autoregressive nonlinear models



Introduction and motivation

Aim of the study:

understand the price dynamics of several primary commodities

verify whether nonlinear methods help to improve forecast accuracy
for commodity prices

Contribution:

more comprehensive study as more models and commodities are
covered
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Round-up of forecasting methods

Competitiors:

threshold model (self-exciting threshold autoregression model -
SETAR)

transition model (logistic smooth transition model - LSTAR)

autoregressive Markov regime switching models (MS − AR)

autoregressive feedforward neural network (AR − NN)

Benchmarks:

random walk

ARIMA class model
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Round-up of forecasting methods
Threshold and transition models

Two regime SETAR(p1, p2, d) model with delay d and autoregressive
parameters p1, p2 is defined as follows (Franses and Dijk, 2000):

yt =(φ0,1 + φ1,1yt−1 + ...+ φp1,1yt−p1 )I [yt−d ≤ c]+

(φ0,2 + φ1,2yt−1 + ...+ φp1,2yt−p2 )I [yt−d > c] + εt
(1)

where c is the value of threshold parameter.

Two regime LSTAR(p1, p2, d) model with delay d and autoregressive
parameters p1, p2 is specified as follows (Franses and Dijk, 2000):

yt =(φ0,1 + φ1,1yt−1 + ...+ φp1,1yt−p1 )(1− G (yt−d , γ, c))+

(φ0,2 + φ1,2yt−1 + ...+ φp1,2yt−p2 )G (yt−d , γ, c) + εt
(2)

where G () is a logistic transition function.
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Round-up of forecasting methods
Markov switching models

The MS − AR(s) model, where s is a number of lags, is described as
follows Franses and Dijk, 2000):

yt =
K∑

k=1

Stk(

p∑
s=1

φk,stt−s + εt) (3)

where Stk = 1 if if the state variable Qt = k and Stk = 0 otherwise.

The distribution of the hidden state process is given by the transition
probability matrix: pjk = P(Qt = k |Qt−1 = j)
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Round-up of forecasting methods
Neural networks

Single hidden layer feedforward specification with D hidden units and p
autoregressive lags is described as follows (Franses and Dijk, 2000):

yt = φ0 +
∑

h = 1DβjG (γ0,h, ..., γp,h, yt−1, ..., yt−p) + εt , (4)

where G () is an activation function and parameters γ are connection
weights between the h − th hidden unit with all input units.
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Data and competition design

1 Three groups of commodities are considered:

energy commodities: Brent crude oil, WTI crude oil, natural gas,
coal,
metals: gold, silver, aluminum, platinum, zinc, copper,
agriculture goods: coffee, maize, wheat, soybeans, sugar.

2 Recursive forecasting scheme first vintage 15 years of data from the
period 1987:5 2002:4

3 Forecast horizon for each sample from 1 to 12 months

4 Accuracy measure RMSE

5 Two different specifications for each method
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Summary statistics and nonlinearity test

The BDS test was developed by Brock, Dechert and Scheinkman (1987). The null hypothesis
assumes independent and identical distribution (iid) againsed a nonlinear structure.
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Results
Energy commodities

The table shows the ratios of the RMSE from a given model in comparison to the RW benchmark.
Asterisks ***, ** and * denote,the significance levels of the two-tailed Diebold-Mariano test.
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Results
Metal commodities
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Results
Agriculture commodities
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Results
Aluminium out-of-sample Sequential forecasts
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Conclustions

The study shows that outperforming RW forecasts is a difficult task

For some commodities and forecasting horizons nonlinear methods
might increase accuracy

No method was proven to consistently beat RW model
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