"SPATIAL DIMENSION OF CREDIT RISK: SPATIAL FILTER APPROACH "

ALEKSANDAR PETRESKI, ANDREAS STEPHAN

JÖNKÖPING INTERNATIONAL BUSINESS SCHOOL

CREDIT RISK – GENERAL

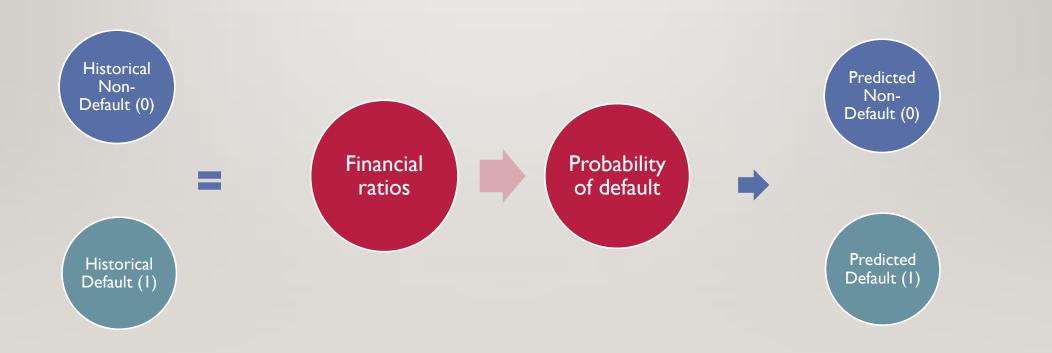
- Credit risk: "Risk of default by the customer on the obligation"
- Banks are interested in having appropriate credit risk classification techniques, which help them to detect problematic clients and assess the credit exposure and potential losses,
- Central Banks are even more interested in banks having relilible credit risk models and techniques.
- Motivation for the paper:

Current models focus on global credit risk parameters, neglecting possible credit risk clusters and perhaps, underestimating credit risk parameters on the local level.

CREDIT RISK - GENERAL

- EL = PD * EAD * LGD (Basel Accord definition)
- Probability of default (PD): "What is the probablity that the client will default on his obligation?"
- Exposure at Default (EAD:) "If the customer defaults, how much is his current obligation at the time of default?"
- Loss given default (LGD): "Once the customer defaults, how much will he pay from his current obligation?"

BINARY CHOICE MODEL

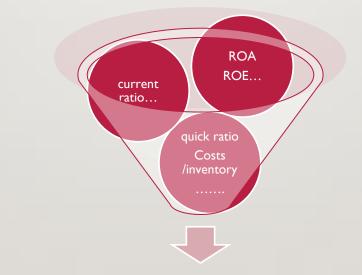


MODEL INPUTS

Financial ratios

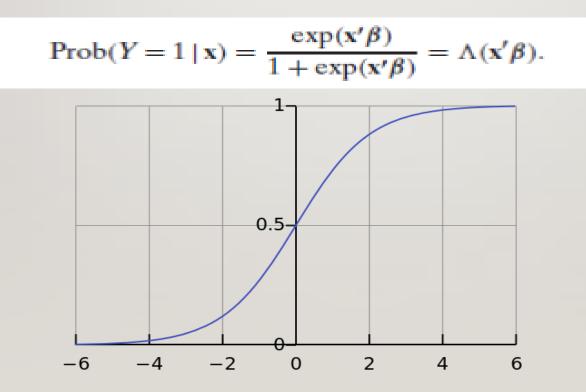
liquidity indicatorssalescurrent ratio =account(current assets /accountcurrent liability)sales revequick ratio =costs /(current assets -costs /inventory)/currentcosts /	rer indicators revenues / hts receivable venues / assets / inventory sales revenues s / accounts bayable	profitability indicators ROE = (net profit / capital + reserves) ROA = (net profit / assets) Net profit margin = (net profit / sales revenues)	debt indicators leverage = (liabilities / capital + reserves) liabilities / assets short term credit / sales revenues current liability / sales revenues	banking credit indicator value of pledged collateral to outstanding credit (inverse of loan to value)
--	---	---	---	---

MODEL INPUTS - MULTICOLINEARITY



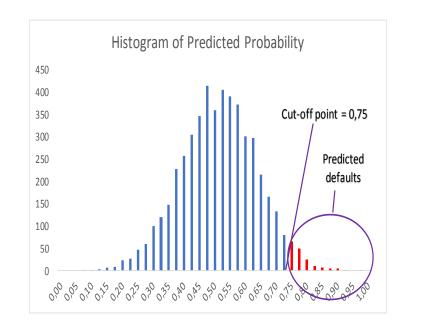
Probability of default (PD) = current ratio + sales revenues to accounts receivable + sales revenues to assets + Net profit margin + ROA+ ROE + leverage + liabilities / assets + collateral to outstanding credit

BINARY CHOICE MODEL - LOGIT



FROM PROBABILITY TO DEFAULT

- Once the model is estimated on the training data, we use the model on the test data to get predicted probabilities.
- Once the probabilities were calculated, the companies were predicted/classified as Non-default / Default according to appropriate cut-off point
- Predicted Non-default / Default are compared with Historical Nondefault/Default



PREDICTION ACCURACY MEASURES

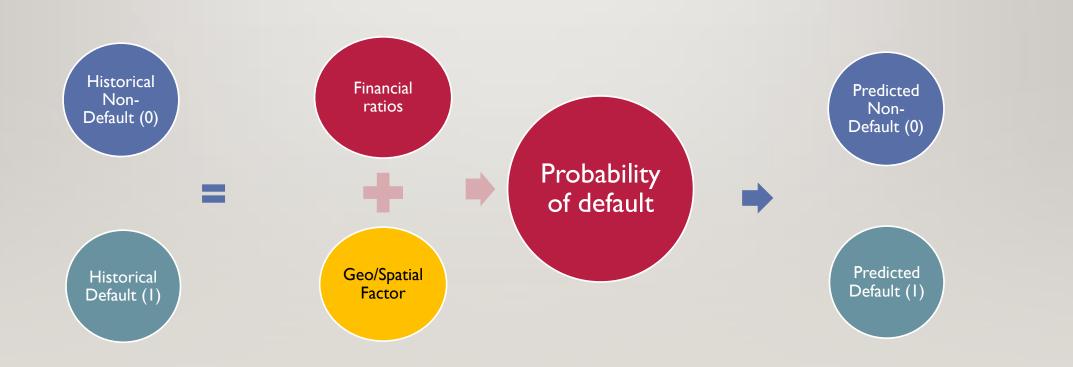
Confusion matrix

	actual					
		0	1			
predicted	0	TP – True Positive	FP - False Positive			
	1	FN – False Negative	TN – True Negative			

- Positive (P) the number of non-default cases ("0"s) in the data
- Negatives (N) the number of default cases ("1"s) in the data
- Sensitivity (recall or True Positive rate) = TP / (TP + FN)
- Specificity (True negative rate) = TN / (TN + FP)
- Precision = TP/(TP + FP)
- Negative predictive value = TN / (TN + FN)
- Accuracy = (TP + TN)/(P + N)
- FI score = 2 * precision * sensitivity / (precision + sensitivity)
- (FI score is the harmonic mean of precision and sensitivity)

- Fernandes and Artes (2016) argue that adding kriging outcome variable in the logistic model improves its accuracy
- Albuquerque, Medina and Silva (2016) construct credit
 scoring models using
 Geographically Weighted
 Logistic Regression (GWLR)
 techniques

BINARY CHOICE MODEL- SPATIAL DIMENSION



NEW PARADIGM– INCLUDE GEO FACTOR

- Introducing a geo-component
- PD = current ratio + sales revenues to accounts receivable + sales revenues to assets + Net profit margin + ROA+ ROE + leverage + liabilities / assets + collateral to outstanding credit + <u>distance to capital</u>
- PD = current ratio + sales revenues to accounts receivable + sales revenues to assets + Net profit margin + ROA+ ROE + leverage + liabilities / assets + collateral to outstanding credit + geographical dummy (rural / urban / cosmopolitan)

INTRODUCING A GEO-COMPONENT

 Distance to capital does not have significant influence on the estimated probability of default

Min 1Q	Median	3Q	Max		
-1.3698 -0.5730	-0.4653 -0.	. 3402 2	2.9367		
Coefficients:					
	Estimate	Std. Err	ror z value	Pr(> z)	
(Intercept)	-2.155e+00	4.065e-	-01 -5.301	1.15e-07	* * *
Size3	5.142e-01	2.278e-	-01 2.257	0.024024	*
SECTORN	1.692e+00	5.251e-	-01 3.222	0.001272	**
revenues to assets	-5.223e-01	1.006e-	-01 -5.192	2.08e-07	***
ROA	-5.298e+00	2.901e+	+00 -1.826	0.067828	
oblig. to assets	1.416e+00	3.745e-	-01 3.782	0.000156	***
dist_from_centre	8.271e-06	1.120e-	-03 0.007	0.994107	
Signif. codes: 0	'***' 0.001	'**' 0.0	0.05 (*'	'.' 0.1'	'1
(Dispersion parame	ter for bind	omial fan	nily taken m	to be 1)	
Null deviance:	2936.9 on	3856 de	egrees of f	reedom	
Residual deviance:	2779.4 on	3821 de	egrees of f	reedom	
AIC: 2851.4					

Deviance Residuals:

INTRODUCING A GEO-COMPONENT

<u>Companies in rural</u>

municipalities have to some extent significantly lower estimated probability of default than the companies in the urban or cosmopolitan municipality Deviance Residuals:

Min	1Q	Median	3Q	Мах
-1.3731	-0.5791	-0.4624	-0.3354	2.9572

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-1.9327884	0.4011482	-4.818	1.45e-06	***
Size3	0.4574680	0.2200163	2.079	0.037595	*
SECTORN	1.5740263	0.5243641	3.002	0.002684	**
revenues to assets	-0.5444658	0.0992840	-5.484	4.16e-08	***
ROA	-5.9083472	2.8491434	-2.074	0.038105	*
obliga.to assets	1.3700925	0.3637948	3.766	0.000166	***
rural	-0.3355379	0.2033449	-1.650	0.098924	\geq
urban	-0.0349231	0.1031850	-0.338	0.735023	
Signif. codes: 0	'***' 0.001	'**' 0.01 '	*' 0.05	'.' 0.1	''1
(Dispersion paramet	ter for bind	omial family	/ taken t	to be 1)	
Null deviance:	3096.1 on	4031 degre	es of fr	reedom	
Residual deviance:	2918.2 on	3995 degre	es of fr	reedom	
AIC: 2992.2		5			

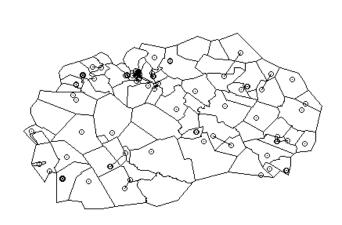
PREDICTION WITH GEO-MODEL - DISTANCE TO CAPITAL

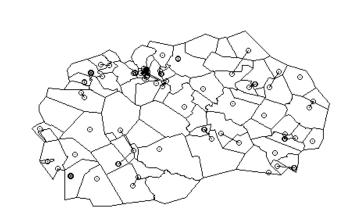
Base model										
quantile	TP	FP	FN	TN	sensitivity	accuracy	recall	F1score	precision	true negative
quantite					Sensitivity	accondey	recuir	115000	precision	rate
0,25	75	8	856	149	0,1483	0,2059	0,0806	0,1479	0,9036	0,9490
0,50	116	10	815	147	0,1528	0,2417	0,1246	0,2195	0,9206	0,9363
0,75	161	16	770	141	0,1548	0,2776	0,1729	0,2906	0,9096	0,8981
0,90	219	18	712	139	0,1633	0,3290	0,2352	0,3750	0,9241	0,8854
0,95	243	20	688	137	0,1661	0,3493	0,2610	0,4070	0,9240	0,8726
0,99	397	34	534	123	0,1872	0,4779	0,4264	0,5830	0,9211	0,7834
•	and the filter									
1odel with geo-	variable (dist	ance to th	e capital)							
quantile	TP	FP	FN	TN	sensitivity	accuracy	recall	F1score	precision	true negative
quantic					Den Brinney	accondey	, ccan	125000	precision	rate
0,25	75	8	856	149	0,1483	0,2059	0,0806	0,1479	0,9036	0,9490
0,50										\sim \sim
	116	10	815	147	0,1528	0,2417	0,1246	0,2195	0,9206	0,9363
0,75	116 161	10 16	815 770	147 141	0,1528 0,1548	0,2417 0,2776	0,1246 0,1729	0,2195 0,2906	0,9206 0,9096	0,9363 0,8981
0,75 0,90						· ·	1 A A A A A A A A A A A A A A A A A A A	1 A A A A A A A A A A A A A A A A A A A	· · · · · · · · · · · · · · · · · · ·	-
	161	16	770	141	0,1548	0,2776	0,1729	0,2906	0,9096	0,8981

PREDICTION WITH GEO-MODEL - GEOGRAPHICAL DUMMY

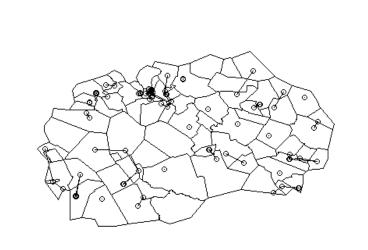
Base model										
quantile	TP	FP	FN	TN	sensitivity	accuracy	F1 score	precision	recall	true negative rate
0,25	77	8	887	158	0,1512	0,2080	0,0799	0,1468	0,9059	0,9518
0,50	119	10	845	156	0,1558	0,2434	0,1234	0,2177	0,9225	0,9398
0,75	173	17	791	149	0,1585	0,2850	0,1795	0,2998	0,9105	0,8976
0,90	235	18	729	148	0,1688	0,3389	0,2438	0,3862	0,9289	0,8916
0,95	274	21	690	145	0,1737	0,3708	0,2842	0,4353	0,9288	0,8735
0,99	445	35	519	131	0,2015	0,5097	0,4616	0,6163	0,9271	0,7892
Model with	dummy geo	-variable (o	osmopolita	an/urban,	/rural)					
quantile	TP	FP	FN	TN	sensitivity	accuracy	F1 score	precision	recall	true negative rate
0,25	77	9	887	157	0,1504	0,2071	0,0799	0,1467	0,8953	0,9458
0,50	121	11	843	155	0,1553	0,2442	0,1255	0,2208	0,9167	0,9337
0,75	172	17	792	149	0,1583	0,2841	0,1784	0,2984	0,9101	0,8976
0,90	232	19	732	147	0,1672	0,3354	0,2407	0,3819	0,9243	0,8855
0,95	270	21	694	145	0,1728	0,3673	0,2801	0,4303	0,9278	0,8735
0,99	446	38	518	128	0,1981	0,5080	0,4627	0,6160	0,9215	0,7711

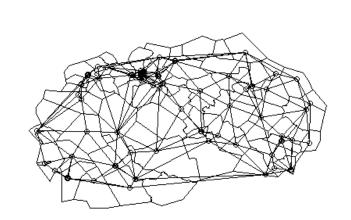
Build spatial component (I) : Coordinates -> Knn nearest neighbor object -> Neighbour list object





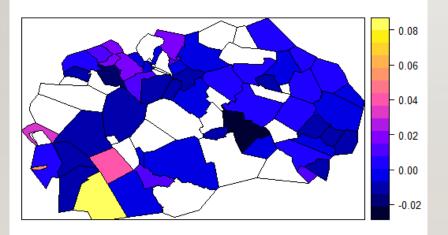
Build spatial component (2) : Coordinates -> Knn nearest neighbor object -> Neighbour list object

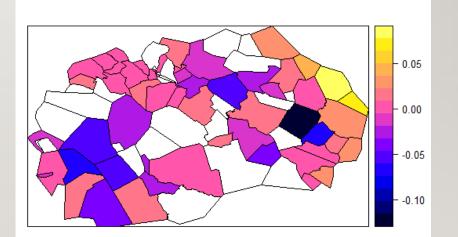




- Use Neighbour list object in the Spatial Filtering.
- When fitting the model with Spatial Filtering, Moran eigenvector GLM filtering is used as in Bivand (2008), which uses brute force to search the set of eigenvectors of the matrix MWM:
 M = I - X(X^tX)⁻¹ X^t
- **M** is a symmetric and idempotent projection matrix and **W** are the spatial weights.
- Once the spatial filter is applied, spatial eigenvectors are used in the main equation.
- PD = current ratio + sales revenues to accounts receivable + sales revenues to assets + Net profit margin + ROA+ ROE + leverage + liabilities / assets + collateral to outstanding credit + fitted spatial eigenvector

Build spatial component (3) : Spatial eigenvectors





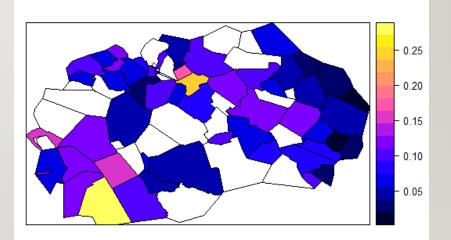
BASE MODEL	
Coefficients:	
(Intercept)	-2.028309
current ratio	-0.105135
sales revenues to accounts receivable	0.002093
sales revenues to assets	-0.191145
Net profit margin	4.772017
ROA	-14.642937
ROE	3.232302
leverage	0.022535
liabilities / assets	0.246656
collateral to outstanding credit	0.010920

Degrees of Freedom: 1105 Te	otal (i.e. Null);	1096 Residual
Null Deviance: 689.6		
Residual Deviance: 657.5	AIC: 677.5	

SPATIAL MODEL	
Coefficients:	
(Intercept)	-1.998662
current ratio	-0.112115
sales revenues to accounts receivable	0.002318
sales revenues to assets	-0.190830
Net profit margin	4.816988
ROA	-15.011321
ROE	3.292886
leverage	0.020073
liabilities / assets	0.218358
collateral to outstanding credit	0.003887
fitted(spatial)vec1	-7.262897
fitted(spatial)vec2	-2.609019
Degrees of Freedom: 1105 Total (i.e. Null);	1094 Residual
Null Deviance: 689.6	
Residual Deviance: 650.8 AIC: 668.9	

INTRODUCING SPATIAL COMPONENT

• Estimated probability of default using spatial model



PREDICTION WITH SPATIAL MODEL

- Prediction results depend on the created weight matrix
- With the increase of the neighbor links, prediction by the spatial model increases and slightly outperforms the base model.
- The form of the graph of neighbor relationship determines the significance of the spatial autocorrelation tests

	base model	1 link	2 links	4 links	triangulation links
AIC	677,5	671,5	675,9	682	668,9
number of links in the neighbor object		1	2	4	5,96
used eigenvectors ANOVA Pr(>Chi)		9 0,00426	8 0,02413	5 0,09667	2 0,001826
average prediction accuracy (from all accuracy measures)	0,4360	0,4319	0,4346	0,4362	0,4400
Moran I statistic p value		0,1510	0,1603	0,0043	0,0217
Observed Moran I		0,0382	0,0541	0,0540	0,0347

CONCLUSION

- In general, spatial filter enhance the fit and can slightly improve the prediction of the credit risk model. Effect of adding eigenvectors to the base model is higher then the effect of adding some geographical dummy or geographical variable like distance to the capital.
- Still, geo-dummies help us to detect that companies in rural municipalities have lower probability of default, compared with rural/urban areas, although not very significant.
- It should be noted however that the fit and prediction results depend on the created weight matrix when using spatial filtering. With the increase of the neighbor links, the prediction by the spatial model increase and slightly outperform the base model.
- It was confirmed that the form of the neighbor relationship determines the significance of the spatial autocorrelation tests.
- Positive autocorrelation indicate existence of clusters of defaults within geographical area, which could confirm the need for use of spatial techniques.