The Impact of Long-Short Speculators on Agricultural Commodity Futures Prices

CHRISTOPH SULEWSKI AND MARTIN T. BOHL

Motivation

Measure Construction and Data Selection

Methodology

Results

- Pronounced spikes and crashes in 2007/08 and 2011
- Commodity index traders (CITs) emerge as important market participants
- Synchronized rise in prices, trading volume and open interest

Are Speculators to blame?

Are speculators to blame?

Commodity Index Traders

- Empirical literature and public debate focused on CITs
- Inconclusive results
 <u>But:</u> Majority finds
 evidence that CITs are not
 accountable

Are speculators to blame?

Commodity Index Traders

- Empirical literature and public debate focused on CITs
- Inconclusive results
 <u>But:</u> Majority finds
 evidence that CITs are not
 accountable

Long-short Speculators

- Classical or long-short speculators received significantly less attention
- Trading strategies significantly different

Are speculators to blame?

Commodity Index Traders

- Empirical literature and public debate focused on CITs
- Inconclusive results
 <u>But:</u> Majority finds
 evidence that CITs are not
 accountable

Long-short Speculators

- Classical or long-short speculators received significantly less attention
- Trading strategies significantly different

Research question

Does the activity of long-short speculators have an influence on returns volatility in agricultural commodities futures markets?

Is long-short speculation stabilizing or destabilizing?

Motivation

Measure Construction and Data selection

Methodology

Results

Measure construction

Measure Construction

See Irwin and Sanders (2012)

Measure construction

Measure Construction

Total Open Interest

Measures the impact of positions held by longshort speculators on commodity price volatility.

$$S_{i,t}^{Total} = NCL_{i,t} + NCS_{i,t}$$

Market Share

Measures whether the market share of longshort speculators impacts on commodity price volatility.

$$S_{i,t}^{Share} = \frac{NCL_{i,t} + NCS_{i,t}}{2 * OI_{i,t}}$$

Data description

Commodity	Exchange	Contract Size	Sample	Currency
Corn	Chicago Board of Trade (CBOT)	5.000 Bushels	02/2006–06/2017	US dollar
Soybeans	Chicago Board of Trade (CBOT)	5.000 Bushels	02/2006–06/2017	US dollar
Sugar	Intercontinental Exchange (ICE)	112.000 Pounds	02/2006–06/2017	US dollar
Wheat	Kansas City Board of Trade (KCBT)	5.000 Bushels	02/2006–06/2017	US dollar
Feeder Cattle	Chicago Mercantile Exchange (CME)	50.000 Pounds	02/2006–06/2017	US dollar
Coffee	Intercontinental Exchange (ICE)	37.500 Pounds	02/2006–06/2017	US dollar

Motivation

Measure Construction and Data Selection

Methodology

Results

Methodology

Methodology – GARCH model

- Preliminary tests indicate GARCH(1,1) as appropriate
- Incorporation of frequently discussed macroeconomic factors

Mean equation: $r_{i,t} = \alpha_0 + \beta_1 SP500_t + \beta_2 Tbill_t + \beta_3 ExRate_t + \beta_4 Oil_t + \eta_{i,t}$

with
$$\eta | \Omega_{t-1} \sim t_{\nu}(0, \sigma^2)$$

Variance equation: $\sigma_{i,t}^2 = \delta_0 + \delta_1 \eta_{i,t-1}^2 + \delta_2 \sigma_{i,t-1}^2 + \delta_3 s_{i,t-1}$

Methodology – Granger Causality test

Starting point is the following VAR model

$$\sigma_{i,t}^{2} = c_{i,1} + \sum_{m=1}^{p} \alpha_{i,m} \sigma_{i,t-m}^{2} + \sum_{n=1}^{q} \beta_{i,n} s_{i,t-n} + \varepsilon_{i,t}$$

$$s_{i,t} = c_{i,2} + \sum_{m=1}^{p} \gamma_{i,m} s_{i,t-m} + \sum_{n=1}^{q} \delta_{i,n} \sigma_{i,t-n}^{2} + v_{i,t}$$

Minimizing Schwartz information criterion indicates p=q=1

Null hypothesis:

- $s_{i,t}$ helps to forecast $\sigma_{i,t}^2$: $\beta_1 = \beta_2 = \cdots = \beta_n = 0$
- $\sigma_{i,t}^2$ helps to forecast $s_{i,t}$: $\delta_1 = \delta_2 = \cdots = \delta_n = 0$

Motivation

Measure Construction and Data Selection

Methodology

Results

Results - GARCH model (S^{Total})

	Corn	Soybeans	Sugar	Wheat	Feeder Cattle	Coffee		
Mean equation								
Constant	0.115	0.189	-0.080	0.009	0.106	-0.017		
S&P 500	-0.032	0.103	-0.021	0.094	0.097***	0.21**		
TBill	0.011*	0.003	0.006	0.003	0.001	-0.009		
ExRate	-1.311***	-1.071***	-0.918***	-1.546***	0.138	-1.243***		
Oil	0.115***	0.086***	0.135	0.070	0.053***	0.109***		
Variance equation								
Constant	0.957**	0.977**	0.894***	2.516***	0.323**	1.198**		
ARCH	0.061***	0.141***	0.077***	0.083**	0.082***	0.053**		
GARCH	0.886***	0.775***	0.887***	0.767***	0.869***	0.875***		
SpecAct	-0.010	-0.088**	-0.186**	-0.227**	-0.046***	-0.146***		

Results - GARCH model (S^{Share})

	Corn	Soybeans	Sugar	Wheat	Feeder Cattle	Coffee			
Mean equation									
Constant	0.111	0.161	-0.073	-0.004	0.098	-0.009			
S&P 500	-0.036	0.106	-0.012	0.105	0.092**	0.212**			
TBill	0.012*	0.003	0.006	0.002	0.002	-0.009			
ExRate	-1.326***	-1.038***	-0.899***	-1.524***	0.113	-1.196***			
Oil	0.112***	0.087***	0.134***	0.070	0.051**	0.107***			
Variance equation									
Constant	0.990**	0.815**	0.642**	2.309***	0.341***	0.833**			
ARCH	0.061***	0.127***	0.074***	0.079**	0.090***	0.048*			
GARCH	0.885***	0.801***	0.899***	0.781***	0.858***	0.898***			
SpecAct	-0.087	-0.099**	-0 . 162 **	-0.292**	-0.058***	-0.204***			

Results – Granger Causality test

H_0	Lags	F-Stat.	Estimated Coefficient H_0		Lags	F-Stat.	Estimated Coefficient	
Corn								
$S^{Total} \rightarrow \sigma^2$	1	0.116	-0.006	$S^{Share} \rightarrow \sigma^2$	1	5.602**	-0.035***	
$\sigma^2 \rightarrow S^{Total}$		0.102	0.012	$\sigma^2 \rightarrow S^{Share}$		1.375	0.049	
Soybeans								
$S^{Total} \rightarrow \sigma^2$	1	6.922***	-0.043^{***}	$S^{Share} \rightarrow \sigma^2$	1	18.153***	-0.071***	
$\sigma^2 \rightarrow S^{Total}$		0.858	-0.042	$\sigma^2 \rightarrow S^{Share}$		-0.071	-0.009	
Sugar								
$S^{Total} \rightarrow \sigma^2$	1	4.810**	-0.039**	$S^{Share} \rightarrow \sigma^2$	1	4.916**	-0.038**	
$\sigma^2 \rightarrow S^{Total}$		2.106	-0.036^*	$\sigma^2 \rightarrow S^{Share}$		0.212	-0.012	

Results – Granger Causality test

H_0	Lags	F-Stat.	Estimated Coefficient	H_0	Lags	F-Stat.	Estimated Coefficient		
Wheat									
$S^{Total} \rightarrow \sigma^2$	1	11.724***	-0.033***	$S^{Share} \rightarrow \sigma^2$	1	15.601***	-0.042***		
$\sigma^2 \rightarrow S^{Total}$		0.632	0.052	$\sigma^2 \rightarrow S^{Share}$		0.634	0.049		
Feeder Cattle									
$S^{Total} \rightarrow \sigma^2$	1	1.619	-0.011	$S^{Share} \rightarrow \sigma^2$	1	8.419***	-0.029***		
$\sigma^2 \rightarrow S^{Total}$		0.262	-0.073	$\sigma^2 \rightarrow S^{Share}$		0.005	-0.009		
Coffee									
$S^{Total} \rightarrow \sigma^2$	1	9.859***	-0.028***	$S^{Share} \rightarrow \sigma^2$	1	32.318***	-0.053***		
$\sigma^2 \rightarrow S^{Total}$		0.011	0.006	$\sigma^2 \rightarrow S^{Share}$		0.511	0.042		

Motivation

Measure Construction and Data Selection

Methodology

Results

Conclusion

Empirical results indicate that long-short speculators' activity reduces volatility

2 Findings are in line with the traditional theory

Previous empirical literature on CITs and on the impact of speculation receives in general comparable results

Long-short speculators' activity reduces volatility of agricultural commodity prices

Thank you for your attention

References

Aulerich, N. M., Irwin, S. H., and Garcia, P. (2014). Bubbles, food prices, and speculation: Evidence from the cftc's daily large trader data files. In Chavas, J.-P., Hummels, D., and Wright, B., editors, *The economics of food price volatility*, A National Bureau of Economic Research conference report, pages 211–253. University of Chicago Press, Chicago and London.

Büyüksahin, B. and Robe, M. A. (2014). Speculators, commodities and cross-market linkages. *Journal of International Money and Finance*, 42:38–70.

Irwin, Scott H., and Dwight R. Sanders. "Testing the Masters Hypothesis in commodity futures markets." *Energy economics* 34.1 (2012): 256-269.